지수함수의 그래프
로그함수와 로그함수의 그래프
로그함수와 로그함수의 그래프에 대해서 알아보죠.
로그의 정의에서 공부했던 것처럼 로그와 지수(거듭제곱)는 서로 깊은 관계가 있어요. 따라서 로그함수와 지수함수도 아주 깊은 관계가 있죠. 그래프도 물론이고요.
역함수와 역함수의 그래프의 성질에 대해서 알고 있으면 로그함수와 지수함수의 관계를 조금 더 쉽게 이해할 수 있어요.
로그함수
역함수, 역함수 구하는 법에서 역함수 구하는 방법 공부했었죠?
지수함수 y = ax (a > 0, a ≠ 1)의 역함수를 구해보죠.
- 함수 y = f(x)가 일대일 대응인지 확인
지수함수 y = ax (a > 0, a ≠ 1)에서 정의역은 실수의 집합이고, 치역은 양수의 집합이었어요. 그리고 일대일 대응이죠. - y = f(x)를 x에 대하여 푼다. → x = f-1(y)
로그의 정의에 따르면 y = ax → x = logay - x와 y를 바꾼다. → y = f-1(x)
y = logax - 함수 f의 정의역과 치역을 서로 바꾼다.
정의역은 양수의 집합, 치역은 실수의 집합
지수함수의 역함수를 구했더니 a를 밑으로 하는 로그가 되었죠? 이 로그를 로그함수라고 해요.
로그함수
y = logax (a > 0, a ≠ 1)
지수함수 y = ax (a > 0, a ≠ 1)의 역함수
정의역은 양수 전체의 집합, 치역은 실수 전체의 집합
로그함수의 그래프
로그함수의 그래프를 한 번 그려보죠.
로그함수는 지수함수의 역함수예요. 역함수의 그래프는 y = x에 대하여 대칭이에요. 지수함수 y = ax의 그래프를 y = x에 대칭이동한 그래프가 로그함수 y = logax의 그래프죠.
지수함수 y = ax (a > 0, a ≠ 1)의 그래프는 (0, 1), (1, a)를 지나고 x축이 점근선이었어요.
그리고 a의 범위에 따라 두 가지 형태가 있었죠. a > 1일 때는 x가 증가할 때, y도 증가하고, 0 < a < 1일 때는 x가 증가하면 y는 감소해요.
왼쪽이 a > 1일 때로 얇은 빨간선이 y = ax의 그래프, 두꺼운 파란선이 y = logax의 그래프예요. 로그함수의 그래프도 x가 증가하면 y가 증가하네요. 로그함수의 그래프는 y축에 점점 가까워지니까 y축이 점근선이에요.
오른쪽이 0 < a < 1일 때로 지수함수와 로그함수의 그래프에서 x가 증가하면 y가 감소해요.
지수함수 y = ax, 로그함수 y = logax (a > 0, a ≠ 1)를 비교해보죠.
a > 0, a ≠ 1 | y = ax | y = logax |
---|---|---|
정의역 | {x|x는 실수} | {x|x > 0인 실수} |
치역 | {y|y > 0인 실수} | {y|y는 실수} |
(0, 1) | (1, 0) | |
(1, a) | (a, 1) | |
점근선 | x축 | y축 |
증가, 감소 | a > 1일 때, x가 증가하면 y도 증가 0 < a < 1일 때, x가 증가하면 y는 감소 | |
역함수 | 두 함수는 서로 역함수로 그래프는 y = x에 대하여 대칭 |
함께 보면 좋은 글
지수함수, 지수함수의 그래프
로그함수 그래프의 평행이동과 대칭이동
역함수, 역함수 구하는 법
역함수의 성질, 역함수의 그래프
지수함수 그래프의 평행이동과 대칭이동
지수함수 그래프의 평행이동과 지수함수 그래프의 대칭이동이에요. 중학교 3학년 때 이차함수 그래프의 평행이동과 대칭이동을 공부했었죠? 함수의 종류만 달라졌을 뿐 그래프의 평행이동, 대칭이동이라는 건 똑같아요.
게다가 도형의 평행이동, 대칭이동은 1학년 때 공부했잖아요. 이 내용을 그냥 지수함수의 그래프에 적용한 것뿐이에요.
새로운 내용도 아니고 이미 공부했던 걸 아주 살짝 확장하는 것이니까 그냥 한 번 죽 읽어보세요.
지수함수 그래프의 평행이동
지수함수 y = ax (a > 0, a ≠ 1)의 그래프를 평행이동하면 어떻게 될까요? 점과 도형의 평행이동에서 했던 내용을 그대로 지수함수의 그래프에 적용해보죠.
일단 평행이동을 하더라도 그래프의 모양은 바뀌지 않아요.
점을 평행이동하면 이동한 만큼 원래 점의 좌표에 더해줘요. (x, y)라는 점을 x축으로 p만큼, y축 방향으로 q만큼 평행이동하면 그 결과는 (x + p, y + q)예요.
도형의 평행이동에서 f(x, y) = 0을 x축 방향으로 p만큼, y축 방향으로 q만큼 평행이동하면 f(x - p, y - q) = 0이 된다고 했어요. x 대신 x - p, y 대신 y - q를 대입하죠.
f(x, y) = 0의 평행이동
x축 방향으로 p만큼 평행이동: x 대신 x - p. f(x - p, y) = 0
y축 방향으로 q만큼 평행이동: y 대신 y - q. f(x, y - q) = 0
x축으로 p만큼, y축 방향으로 q만큼 평행이동: x 대신 x - p, y 대신 y - q. f(x - p, y - q) = 0
지수함수 y = ax (a > 0, a ≠ 1)의 그래프는 어떤 특징이 있었나요? 그래프 자체뿐 아니라 꼭 지나는 점이 있었어요. (0, 1)과 (1, a)죠. 이 점도 평행이동하죠? 이동한 만큼 더해줘요.
그리고 점근선이 있었죠? 점근선은 x축 즉 y = 0이라는 직선이었어요. 이 직선은 x축 방향으로 평행이동해도 똑같아요. y축 방향으로 평행이동할 때는 y = 0 대신 y - p = 0이니까 y = p가 되지요.
지수함수 y = ax의 그래프를 x축 방향으로 p만큼 평행이동하면 x 대신 x - p를 넣어줘요.
y = ax → y = ax - p
(0, 1) → (p, 1), (1, a) → (1 + p, a)
점근선: y = 0 → y = 0
지수함수 y = ax의 그래프를 y축 방향으로 q만큼 평행이동하면 y 대신 y - q를 넣어요.
y = ax → y - q = ax → y = ax + q
(0, 1) → (0, 1 + q), (1, a) → (1, a + q)
점근선: y = 0 → y - q = 0 → y = q
지수함수 y = ax의 그래프를 x축 방향으로 p만큼, y축 방향으로 q만큼 평행이동하면 x 대신 x - p, y 대신 y - q를 넣어줘요.
y = ax → y - q = ax - p → y = ax - p + q
(0, 1) → (p, 1 + q), (1, a) → (1 + p, a + q)
점근선: y = 0 → y - q = 0 → y = q
이건 외우는 게 아니라 뭐가 어떻게 바뀌는지, 원래 식에 뭘 대입해야 하는지만 알면 돼요.
y = ax의 그래프 |
y = ax - p의 그래프 |
y = ax + q의 그래프 |
y = ax - p + q의 그래프 |
a > 1일 때의 그래프만 있는데 0 < a < 1일 때도 똑같아요.
지수함수 그래프의 대칭이동
이번에는 지수함수 y = ax (a > 0, a ≠ 1)의 그래프를 대칭이동하면 어떻게 되는지 알아보죠.
이것 역시 점과 도형의 대칭이동 - x축, y축, 원점에 대하여 대칭이동에서 했던 내용을 지수함수의 그래프에 적용하는 거예요.
f(x, y)= 0의 대칭이동
x축에 대하여 대칭이동: y 대신 -y. f(x, -y) = 0
y축에 대하여 대칭이동: x 대신 -x. f(-x, y) = 0
원점에 대하여 대칭이동: x 대신 -x, y 대신 -y. f(-x, -y) = 0
지수함수 y = ax (a > 0, a ≠ 1)의 그래프를
x축에 대하여 대칭이동 하면 -y = ax → y = -ax
y축에 대하여 대칭이동 하면 y = a-x
원점에 대하여 대칭이동 하면 -y = a-x → y = -a-x
지수함수의 그래프에서 y = ax의 그래프와 의 그래프는 y축에 대하여 대칭이라는 걸 공부했었죠?
이것도 역시 외우는 게 아니라 뭐가 어떻게 바뀌는지 식에 어떻게 대입해야 하는지만 알면 돼요.
y = ax의 그래프 |
y = a-x의 그래프 |
y = -ax의 그래프 |
y = -a-x의 그래프 |
a > 1일 때의 그래프만 있는데 0 < a < 1일 때도 똑같아요.
함께 보면 좋은 글
지수함수, 지수함수의 그래프
지수법칙 - 실수 지수, 정수 지수, 유리수 지수 비교
[고등수학/고1 수학] - 평행이동, 점과 도형의 평행이동
[고등수학/고1 수학] - 점과 도형의 대칭이동 - x축, y축, 원점에 대하여 대칭이동
[고등수학/고1 수학] - 대칭이동 - 직선에 대하여 대칭이동(y = x, y = ax + b)
지수함수, 지수함수의 그래프
지수법칙에 이어 지수함수예요. 지수함수는 이름 그대로 지수를 이용한 함수예요.
x가 증가할 때 y는 증가하는지 감소하는지, 그래프가 어느 방향으로 향하는지, 반드시 지나는 점이 있는지 등 함수의 그래프를 공부할 때 알아야 하는 성질이 몇 가지 있죠? 지수함수의 그래프에서도 똑같이 그런 특징들을 알아볼 거예요.
그러니까 지수함수는 앞에서 했던 지수가 실수일 때 지수법칙, 일반적인 함수와 그래프의 두 내용이 섞여서 나와요. 이미 알고 있는 두 내용이니까 잘 읽어보면 이해하는 게 그렇게 어렵지는 않을 거예요.
지수함수
a > 0일 때, 임의의 실수 x에 대하여 ax는 그 값이 하나만 있어요. x에 대하여 한 개의 값만 대응하니까 함수라고 할 수 있죠.
이 y = ax를 a를 밑으로 하는 지수함수라고 해요.
만약에 a = 1이면 y = 1이라는 상수함수가 되죠? 그래서 지수함수에서는 a ≠ 1이에요.
실수인 거듭제곱근에서 a < 0이고 n이 짝수일 때 y = 를 만족하는 실수는 없다고 했어요. 그러니까 a < 0도 안 돼요.
그래서 지수함수에서는 a > 0이라는 조건이 붙어요.
지수함수
실수 전체의 집합을 정의역으로 하는 함수 y = ax(a > 0, a ≠ 1)를 a를 밑으로 하는 지수함수라 한다.
지수함수의 그래프
y = ax에서 x = 0이면 y = 1이죠? x = 1이면 y = a예요. 즉, y = ax의 그래프는 a와 관계없이 무조건 (0, 1), (1, a)라는 두 점을 지나요.
a > 1일 때를 보죠.
a = 2라고 해볼까요?
…
2-3 =
2-2 =
2-1 =
20 = 1
21 = 2
22 = 4
23 = 8
…
지수가 커지면 커질수록 그 결과도 커져요. 반대로 지수가 작아지면 작아질수록 결과도 작아지죠. 하지만 0보다는 커요.
지수 x가 커지면 y도 커지니까 오른쪽 위로 향하는 그래프죠. 지수 x가 작아지면 y도 작아지는데, 0에 한없이 가까워지기만 할 뿐 0보다는 커요. 그래프가 점점 가까워지는 직선을 점근선이라 하죠? x축이 점근선이에요.
0 < a < 1일 때를 볼까요?
a = 이라고 해보죠.
지수가 작아지면 작아질수록 그 결과는 커져요. 반대로 지수가 커지면 커질수록 결과는 작아지죠. 하지만 0보다는 커요.
지수 x가 커지면 y도 커지니까 오른쪽 아래로 향하는 그래프죠. 여기서도 x축이 점근선이에요.
y = 2x와 y = 의 값을 잘 보세요.
밑이 역수일 때 지수인 x의 부호가 반대면 y값이 같아요. 즉 밑이 역수인 두 지수함수는 y축에 대하여 대칭인 걸 알 수 있어요.
지수함수 y = ax(a > 0, a ≠ 1)의 그래프
정의역은 실수 전체의 집합, 치역은 양수의 집합
(0, 1), (1, a)를 지난다.
x축이 점근선
a > 1일 때, x가 증가하면 y도 증가
0 < a < 1일 때, x가 증가하면 y는 감소
y = ax의 그래프와 의 그래프는 y축에 대하여 대칭
함께 보면 좋은 글
거듭제곱근, 거듭제곱
실수인 거듭제곱근
거듭제곱근의 성질
지수법칙 - 실수 지수, 정수 지수, 유리수 지수 비교