이차식

일차방정식을 공부하고 나면 이차방정식을 공부했어요. 일차함수를 공부하고 나면 이차함수를 공부했고요. 일차부등식을 공부했지요? 그러니까 이제는 이차부등식을 공부할 차례예요.

이차부등식의 풀이는 일차부등식의 풀이와 많이 달라요. 오히려 이차방정식과 관련된 내용이 많이 나옵니다. 이차방정식에서 등호만 부등호로 바뀐 게 이차부등식이니까요. 앞서 공부했던 이차방정식의 여러 가지 특징을 잘 기억하세요.

이차부등식이 무엇인지 이차부등식의 해는 어떻게 구하는지 알아보죠.

이차부등식, 이차부등식의 해

모든 항을 좌변으로 이항했을 때 좌변의 최고차항이 이차인 부등식을 이차부등식이라고 해요. ax2 + bx + c > 0으로 표시하죠. 이때 이차부등식이 되려면 a ≠ 0이어야 해요. 물론 부등호는 >, ≥ < ≤ 총 네 가지가 있고요.

이차방정식의 해를 구할 때 인수분해를 했었죠? 이차부등식의 해를 구할 때도 인수분해를 합니다.

  1. 모든 항을 좌변으로 이항
  2. 동류항 정리
  3. 인수분해

일단 먼저 인수분해를 하세요. 다음 단계는 조금 복잡하니까 잘 보시고요.

이차부등식의 해 - (x - α)(x - β) > 0

이차항의 계수가 1이고 (x - α)(x - β) > 0 (α < β)으로 인수분해되는 이차부등식이 있다고 해보죠. (x - α)와 (x - β)라는 두 식을 곱해서 양수가 되려면 두 식이 모두 양수이거나 모두 음수여야 해요.

  • 둘 다 양수일 때, x - α > 0 and x - β > 0
    • x - α > 0
      x > α
    • x - β > 0
      x > β
    α < β 이므로 x > β
  • 둘 다 음수일 때, x - α < 0 and x - β < 0
    • x - α < 0
      x < α
    • x - β < 0
      x < β
    α < β 이므로 x < α

α < β일 때,
(x - α)(x - β) > 0 → x < α or x > β
(x - α)(x - β) ≥ 0 → x ≤ α or x ≥ β

이차식이 0보다 클 때는 이차식을 0으로 만드는 두 수(α, β) 중 작은 수(α)보다 작거나 큰 수(β)보다 큰 해를 갖는 걸 알 수 있어요.

이차부등식의 해 - (x - α)(x - β) < 0

이번에는 이차항의 계수가 1이고 (x - α)(x - β) < 0 (α < β)으로 인수분해되는 이차부등식이 있다고 해보죠. 두 식을 곱해서 음수가 되려면 두 식의 부호가 서로 반대여야 하죠.

  • x - α > 0 and x - β < 0 일 때
    • x - α > 0
      x > α
    • x - β < 0
      x < β
    α < β 이므로 α < x < β
  • x - α < 0 and x - β > 0 일 때
    • x - α < 0
      x < α
    • x - β > 0
      x > β
    α < β이므로 해 없음.

α < β일 때,
(x - α)(x - β) < 0 → α < x < β
(x - α)(x - β) ≤ 0 → α ≤ x ≤ β

이차식이 0보다 작을 때는 이차식을 0으로 만드는 두 수(α, β) 중 작은 수(α)와 큰 수(β) 사이의 해를 갖는 걸 알 수 있어요.

이차항의 계수가 1일 때를 살펴봤는데요. 1이 아닐 때는 인수분해에만 영향을 미치지 해를 구하는 과정은 위와 똑같아요.

다음 이차부등식의 해를 구하여라.
(1) x2 - 3x + 2 < 0
(2) 2x2 + 6x - 20 ≥ 0

이차부등식의 해를 구하려면 일단 인수분해를 하죠. 그리고 각 항을 0으로 만드는 두 수를 구하고요.

(1) x2 - 3x + 2 < 0
(x - 1)(x - 2) < 0

이차식이 0보다 작으니까 좌변을 0으로 만드는 두 수에서 작은 것과 큰 것 사이의 해를 가져요. 이차식을 0이 되게 하는 수는 1과 2이므로 해는 1 < x < 2가 됩니다.

(2) 2x2 + 6x - 20 ≥ 0
2(x2 + 3x - 10) ≥ 0
2(x - 2)(x + 5) ≥ 0

앞에 있는 2는 양수라서 식의 부호에 영향을 미치지 않죠? 이차식이 0이 되는 수는 2, -5이고 이차식이 0보다 크네요. 이때는 작은 수보다 작고, 큰 수보다 큰 해를 가지므로 x ≤ -5 또는 x ≥ 2가 해입니다.

함께 보면 좋은 글

부등식 ax > b의 풀이, 부정, 불능
부등식의 성질, 부등식끼리의 사칙연산
절댓값 기호를 포함한 일차부등식의 풀이
절댓값 기호를 포함한 부등식의 풀이 2

정리해볼까요

이차부등식: 모든 항을 좌변으로 이항했을 때 최고차항의 차수가 2차인 부등식

  1. 모든 항을 좌변으로 이항
  2. 동류항 정리
  3. 인수분해
  4. α < β일 때,
    (x - α)(x - β) > 0 → x < α or x > β
    (x - α)(x - β) < 0 → α < x < β
<<  수학 1 목차  >>
 
그리드형

1학년 때 다항식의 계산을 공부했어요. 특히 일차식의 덧셈과 뺄셈을 많이 연습했었죠? 이번 글에서는 다항식 중에서도 이차식의 덧셈과 뺄셈을 공부할 거예요. 그리고 문자가 한 개가 아니라 여러 개 있는 식도 계산할 거예요.

큰 틀에서 보면 1학년 때 했던 동류항의 계산과 똑같으니까 어렵게 생각할 필요는 없어요. 다만 항의 개수가 늘어나다 보니 뭔가 더 복잡해 보이고 어려워 보이는 것뿐이에요.

계산과정에서 실수가 많이 나올 수 있으니까 집중해서 보세요. 계산을 한 항에는 줄을 긋는 등의 표시를 하는 것도 괜찮은 방법이니까 사용해 보시고요. 

다항식의 덧셈과 뺄셈

1학년 때의 다항식의 계산과 달라진 것이 있다면 문자의 개수와 차수가 늘어났다는 거예요. 1학년 때는 문자가 한 개였고, 차수는 1이었죠. 이제는 문자의 개수가 2개 이상이고, 차수도 2로 높아져요.

하지만 문자와 차수가 같은 동류항끼리 묶어서 계산한다는 원칙만 기억하고 있다면 크게 어렵지는 않죠.

2a + b + 3a - 2b라는 식을 볼까요? a라는 문자와 b라는 문자가 있어요. 2a와 3a가 동류항이고, b와 -2b가 동류항이죠. 따로 계산하면 돼요.

2a + b + 3a - 2b
= 2a + 3a + b - 2b
= 5a - b

괄호가 있으면 분배법칙을 이용해서 괄호를 풀고 동류항끼리 묶어서 계산해요. 또, 괄호가 여러 개 있으면 소괄호(), 중괄호{}, 대괄호[] 순으로 풀어요.

3(5a - 2b) - (3a + b)
= 15a - 6b - 3a - b
= 15a - 3a - 6b - b
= 12a - 7b

다항식의 계산: 문자와 차수가 같은 동류항끼리 계산
괄호가 있으면 분배법칙을 이용
소괄호, 중괄호, 대괄호 순으로 괄호를 푼다.

다음을 간단히 하여라.
(1) 3(a + b) - 2(a - b)
(2) 3a + 2[b + 3{a + 3b - (2b - b)} + 3a]

괄호가 있으면 소괄호, 중괄호, 대괄호 순서로 분배법칙을 이용해서 풀고 동류항끼리 계산을 해요.

(1)은 분배법칙을 이용해서 풀어야겠네요.
3(a + b) - 2(a - b)
= 3a + 3b - 2a + 2b
= 3a - 2a + 3b + 2b
= a + 5b

(2)번은 괄호가 여러 개 있어요. 소괄호부터 차례로 하나씩 풀어보죠.
3a + 2[b + 3{a + 3b - (2b - b)} + 3a]
= 3a + 2[b + 3{a + 3b - b} + 3a]
= 3a + 2[b + 3{a + 2b} + 3a]
= 3a + 2[b + 3a + 6b + 3a]
= 3a + 2[7b + 6a]
= 3a + 14b + 12a
= 15a + 14b

이차식의 덧셈과 뺄셈

일차식은 최고차항의 차수가 1인 식이에요. 그럼 이차식은 최고차항의 차수가 2인 식을 말하겠죠? 이차식은 차수가 2인 항이 하나 더 생기는 것뿐이에요.

3a2 + 5a - 1 이런 식이 이차식이죠. 이때 일차항이나 상수항이 없어도 이차식이에요. 3a2 + 5a도 이차식이고, 3a2 - 1도 이차식, 3a2만 있어도 이차식이에요. 하지만 이차항은 꼭 있어야 해요.

이차식을 계산한 후에 답을 쓸 때는 차수가 높은 수부터 내림차순으로 정리해요. 이차항, 일차항, 상수항의 순서로 쓰는 거죠. 순서가 다르다고 해서 틀린 건 아니지만, 내림차순으로 쓰기로 약속했어요.

이차식: 최고차항의 차수가 2인 다항식
동류항 계산: 이차항끼리, 일차항끼리, 상수항끼리 계산
내림차순: 이차항, 일차항, 상수항의 순서로

(2a2 + 3a + 1) + (a2 + 3)을 계산해보죠. a2라는 이차항, a의 일차항, 상수항으로 되어 있어요. 두 번째 괄호 안에는 일차항이 없지만 상관없어요.

(2a2 + 3a + 1) + (a2 + 3)
= 2a2 + a2 + 3a + 1 + 3
= 3a2 + 3a + 4

여기서도 괄호가 있다면 분배법칙을 이용해서 풀어서 동류항끼리 묶어서 계산합니다.

2(a2 + 3a + 1) - 3(a2 + a - 1)
= 2a2 + 6a + 2 - 3a2 - 3a + 3
= 2a2 - 3a2 + 6a - 3a + 2 + 3
= -a2 + 3a + 5

다음을 간단히 하여라.
(1) (2 - a - 3a2) + (4a2 + 2a - 2)
(2) 3(a2 + 3a + 3) + 4(a2 - 3a) - 2

이차식에서는 동류항이 이차항, 일차항, 상수항의 세 항이 있으니까 따로 계산하면 돼요. 그리고 답을 쓸 때는 내림차순으로 쓰고요.

(1) (2 - a - 3a2) + (4a2 + 2a - 2)
= -3a2 + 4a2 - a + 2a + 2 - 2
= a2 + a

(2) 3(a2 + 3a + 3) + 4(a2 - 3a) - 2
= 3a2 + 9a + 9 + 4a2 - 12a - 2
= 3a2 + 4a2 + 9a - 12a + 9 - 2
= 7a2 - 3a + 7

함께 보면 좋은 글

단항식의 곱셈과 나눗셈
단항식과 다항식의 곱셈과 나눗셈
지수법칙 - 곱셈, 거듭제곱
지수법칙 - 나눗셈, 괄호, 분수
[중등수학/중1 수학] - 일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈

정리해볼까요

다항식의 덧셈과 뺄셈

  • 동류항 계산: 문자와 차수가 같은 항끼리 따로 계산
  • 괄호가 있으면 분배법칙
  • 소괄호, 중괄호, 대괄호 순으로 괄호 풀기
  • 이차식의 덧셈과 뺄셈: 동류항 계산, 내림차순으로 씀.
 
그리드형

+ 최근글