동경
삼각부등식, 삼각부등식 푸는 법
원래 부등식은 방정식의 확장판이라고 생각하면 쉬워요. 따라서 삼각부등식을 풀 때는 삼각방정식을 풀 때와 같은 방법으로 푼다는 것만 잘 기억하고 있으면 돼요. 거꾸로 말해서 삼각부등식을 풀려면 삼각방정식을 풀 줄 알아야 한다는 얘기지요.
삼각부등식은 삼각함수 + 부등식이에요. 삼각부등식 문제를 풀 때는 그래프를 꼭 그려야 하는데, 이때 부등식의 영역을 응용하면 문제를 훨씬 더 쉽게 풀 수 있어요.
되게 복잡하고 어려울 것 같지만, 막상 풀어보면 그렇게 어려운 문제들은 나오지 않으니까 너무 걱정하지는 마세요.
삼각부등식
삼각방정식은 삼각함수의 각이나 각을 나타내는 식에 미지수 x를 포함한 방정식이에요. 그럼 삼각부등식은 뭘까요? 삼각부등식은 삼각함수의 각이나 각을 나타내는 식에 미지수 x를 포함한 부등식이지요.
이차방정식을 푸는 방법이나 이차부등식을 푸는 방법이나 별 차이가 없었죠? 인수분해해서 해를 구했잖아요. 이차방정식의 해는 x = α or x = β처럼 등호를 사용한다면 이차부등식은 α < x < β처럼 부등호를 사용한다는 차이뿐이었어요.
삼각부등식을 푸는 과정도 삼각방정식을 푸는 과정과 별로 차이가 없어요. 삼각방정식을 풀 때 사용했던 방법들을 그대로 사용합니다. 삼각부등식도 해가 무수히 많이 생길 수 있기 때문에 한 번의 주기(0 ≤ x < 2π)로 범위를 제한하고요.
의 해를 구하여라. (0 ≤ x < 2π)
여러 방법으로 삼각부등식을 풀어보죠.
그래프의 교점을 이용하는 방법
를 y = sinx와
라는 두 개 식으로 나누어 각각의 그래프를 그린 다음
보다 y = sinx가 위에 있는 구간을 찾으면 돼요.
y = sinx의 그래프와 의 그래프를 그리면 두 점
,
에서 만나고 x가 이 둘 사이의 범위에 있을 때 y = sinx의 그래프가 더 위에 있어요. 따라서
의 해는
< x <
에요.
단위원을 이용하는 방법
단위원 위에서 을 지나는 점의 동경이 두 개 있는데 이 두 동경 사이의 각이 바로 삼각부등식의 해에요.
점 P와 점 Q에서 만나네요. P일 때는 , Q일 때는
에요. 동경
사이의 각이 해가 되는데 둘 사이의 각이 두 종류가 있어요. 하나는 P에서 Q로 양의 방향(시계 반대방향)으로 동경이 이동할 때 생기는 각들이고요. 다른 하나는 Q에서 P까지 양의 방향(시계 반대방향)으로 동경이 이동할 때 생기는 각이에요.
어떤 부분이 해가 될지 모를 때에는 부등식의 영역 2 - f(x, y) > 0, f(x, y) < 0에서 사용했던 방법을 이용하세요. 임의의 각을 하나 대입해보는 거죠. 를 대입해보면
= 1 >
로 문제의 부등식을 만족해요. 따라서
가 들어있는 P에서 Q까지 양의 방향의 각들이 문제의 해에요. 해는
< x <
이네요.
직각삼각형을 이용하는 방법
[중등수학/중3 수학] - 특수한 직각삼각형 세 변의 길이의 비에서 각도에 따른 직각삼각형 각 변의 길이의 비를 외우고 있죠? 1 : 1 : , 1 :
: 2인 직각삼각형의 길이의 비요. 이걸 이용하는 방법이에요.
삼각함수 값의 부호의 올 - 싸 - 탄 - 코에 따르면 sinx > 0이려면 제 1, 2 사분면위의 각이어야 해요. 제 1, 2 사분면 위에 x축을 밑변으로 하고 빗변과 높이의 비가 2 : 1인 직각삼각형을 그리세요.
두 개의 직각삼각형이 그려졌는데도 이 두 직각삼각형의 빗변 사이의 각이 해에요. 두 빗변은 단위원을 이용한 방법에서의 동경과 같은 거니까 나머지는 단위원에서 했던 방법을 그대로 사용하면 돼요.
방법은 다르지만 구한 결과는 같으니까 가장 쉽다고 생각되는 방법을 이용해서 풀 수 있게 연습하세요.
함께 보면 좋은 글
삼각방정식, 삼각방정식 푸는 방법
삼각함수 그래프 그리는 법 - sin 그래프, 주기함수
삼각함수의 그래프 - cos 그래프
삼각함수의 그래프 - tan 그래프
삼각함수를 포함한 식의 최댓값과 최솟값
삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
[중등수학/중3 수학] - 특수한 각의 삼각비, 30°,45°, 60°
[중등수학/중3 수학] - 특수한 직각삼각형 세 변의 길이의 비
삼각함수 각의 변환 2 - π ± θ, π/2 ± θ
삼각함수의 각의 변환 두 번째예요. 삼각함수 각의 변환 1 - 2nπ ± θ, -θ에서는 θ가 2nπ + θ일 때와 -θ일 때를 공부해봤는데요. 이 글에서는 θ가 π ± θ일 때와 일 때를 공부할 거예요.
삼각함수는 기본적으로 sin, cos, tan의 세 가지인데, 거기에 π ± θ와 로 네 개의 각이 나오죠? 그러니까 총 12가지 변환하는 내용이 나와요. 게다가 θ, -θ에 관한 내용도 있어서 양도 많고 상당히 헷갈리는 내용이니까 그림과 설명을 하나씩 잘 짚어가면서 공부해야 해요.
삼각함수 각의 변환
π ± θ의 삼각함수
θ와 π + θ의 삼각함수를 비교해보죠.
그림을 보면 알 수 있겠지만 θ를 나타내는 동경과 π+ θ를 나타내는 동경은 서로 원점에 대하여 대칭이에요. 점 P의 좌표를 (x, y)라고 하고 점 P'의 좌표를 (x', y')라고 한다면 점 P와 점 P'는 원점에 대하여 대칭이므로 부호가 서로 반대예요.
x' = -x
y' = -y
다른 방법으로 생각해보죠. 원점에 대하여 대칭이면 제 1 사분면의 각은 제 3 사분면의 각이 되고, 제 2 사분면의 각은 제 4 사분면의 각이 돼요. 제 1 사분면 ↔ 제 3 사분면, 제 2 사분면 ↔ 제 4 사분면
올 - 싸 - 탄 - 코 (all - sin - tan - cos) 에서 tan 함수는 제 1, 3 사분면의 부호가 (+)로 같고, 제 2, 4 사분면의 부호는 (-)로 같아요. tan은 원점에 대하여 대칭일 때는 부호가 같다는 얘기지요. 따라서 θ가 π + θ가 되어도 tan의 부호는 그대로 인 거예요. sin과 cos는 원점에 대하여 대칭이 아니기 때문에 θ가 π + θ가 되면 부호가 반대로 바뀌어요.
- sin(π + θ) = -sinθ
- cos(π + θ) = -cosθ
- tan(π + θ) = tanθ
이번에는 π - θ의 삼각함수를 알아보죠. 위의 π + θ에서 θ를 -θ로 바뀌기만 하면 돼요.
sin(π - θ) = sin{π + (-θ)} = -sin(-θ) = sin(θ)
cos(π - θ) = cos{π + (-θ)} = -cos(-θ) = -cos(θ)
tan(π - θ) = tan{π + (-θ)} = tan(-θ) = -tan(θ)
의 삼각함수
이번에는 의 삼각함수를 알아보죠.
앞서 했던 여러 삼각함수에서는 대칭이동이었는데, 이번에는 대칭이동이 아니에요.
점 P의 좌표를 (x, y)라고 하고 점 P'의 좌표를 (x', y') 한다면 이 둘 사이에는 어떤 관계가 생길까요? x' = -y, y' = x의 관계가 성립해요. 이 관계가 어떻게 나오는지 잘 이해하셔야 해요.
x' = -y
y' = x
이번에는 의 삼각함수를 알아보죠. 위의
에서 θ를 -θ로 바뀌기만 하면 돼요.
지금까지 삼각함수의 각의 변환을 공부해봤는데, sin, cos, tan 세 가지에다 부호까지 엄청나게 헷갈리죠? 물론 이걸 다 외우면 좋겠지요. 하지만 너무 헷갈려서 외우기가 어렵다면 굳이 외울 필요는 없어요.
이걸 쉽게 변환하는 방법은 삼각함수 각의 변환 총정리에서 다뤄보기로 하죠.
함께 보면 좋은 글
삼각함수 각의 변환 1 - 2nπ ± θ, -θ
삼각함수 사이의 관계
삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
호도법, 라디안(radian)
일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각
삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수라는 새로운 함수를 공부할 거예요. 삼각함수는 쉽게 말해서 삼각비 + 호도법 + 함수예요. 삼각비에서 직각삼각형 세 변의 길이의 비는 각에 대한 일정한 관계가 있었죠? 이 일정한 관계를 함수로 나타낸 것이 삼각함수예요. 삼각비에서는 직각삼각형에서 세 변의 길이의 비를 이용했다면 삼각함수에서는 좌표평면 위의 좌표를 이용하는 차이가 있어요. 또 삼각비에서는 육십분법으로 나타낸 각을 이용했다면 삼각함수에서는 호도법으로 나타낸 각을 이용하죠.
그러니까 삼각함수를 잘하려면 삼각비와 호도법에 대해서 정확히 이해하고 있어야 해요.
삼각함수의 뜻, 삼각함수의 정의
xy좌표평면에 반지름의 길이가 r인 원을 그리고 원 위의 임의의 점을 P라고 해보죠. x축 양의 방향을 시초선으로 하고 동경 가 이루는 각을 θ라고 할 때, ,
,
,
는 θ의 크기에 따라 한 가지로 정해져요.
r ≠ 0일 때, θ → , θ →
, θ →
는 각각 θ에 대한 함수가 돼요. 이 함수를 차례로 사인함수, 코사인함수, 탄젠트함수라고 하고 기호로 sinθ =
, cosθ =
, tanθ =
로 나타냅니다. 그리고 이 세 가지를 묶어서 삼각함수라고 해요.
마치 삼각비, sin, cos, tan에서 빗변과 밑변, 높이 사이의 비를 구했던 것처럼 말이죠. 반지름 r을 빗변의 길이, x를 밑변의 길이, y를 높이라고 생각하면 쉬워요. 대신 삼각비에서는 길이의 비여서 사용하는 숫자가 모두 양수였지만 삼각함수에서는 좌표를 이용하므로 음수도 사용한다는 차이가 있어요.
- sinθ =
- cosθ =
- tanθ =
좌표평면 위에서 원점 O와 점 P(-3, -4)를 이은 선분 OP를 동경으로 하는 각을 θ라고 할 때 sinθ, cosθ, tanθ를 구하여라.
= 5네요.
sinθ =
cosθ =
tanθ =
삼각함수 값의 부호
삼각함수 값의 부호는 θ가 나타내는 동경의 위치에 따라 달라져요. θ가 몇 사분면 위의 각인지에 따라 부호가 달라지죠. 이때, r은 반지름이니까 무조건 양수예요. 따라서 삼각함수의 부호에 영향을 주는 요소는 좌표평면에서 x, y의 부호입니다.
제 1 사분면 | 제 2 사분면 | 제 3 사분면 | 제 4 사분면 | |
---|---|---|---|---|
x, y 부호 | x > 0, y > 0 | x < 0, y > 0 | x < 0, y < 0 | x > 0, y < 0 |
sinθ = |
+ | + | - | - |
cosθ = |
+ | - | - | + |
tanθ = |
+ | - | + | - |
제 1 사분면에서는 세 가지 모두 양수, 제 2 사분면에서는 sinθ만 양수, 제 3 사분면에서는 tanθ만 양수, 제 4 사분면에서는 cosθ만 양수네요. 1, 2, 3, 4 사분면 순서대로 양수인 것들만 뽑아서 올 - 싸 - 탄 - 코 (all - sin - tan - cos)라고 외워요.
각 함수별로 보면 양수가 되는 사분면이 2개, 음수인 사분면이 2개씩 있어요. 사인함수는 제 1, 2, 사분면이 양수이고, 코사인함수는 제 1, 4 사분면이 양수, 탄젠트함수는 제 1, 3 사분면이 양수예요.
함께 보면 좋은 글
호도법, 라디안(radian)
일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각
부채꼴 호의 길이와 넓이, 호도법이용
[중등수학/중3 수학] - 삼각비, sin, cos, tan
일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각
새로운 단원이에요.
이 글에서는 이제까지 우리가 알고 있던 각의 범위를 확장할 거예요. 단순히 각의 크기를 구하는 게 아니라 각의 개념을 다시 정의하고 각을 파악하는 새로운 방법에 대해서 공부할 거예요.
일반각, 시초선, 동경, 사분면 위의 각 등 몇 가지 용어들이 나오는데 그냥 이해만 하면 되고, 굳이 외울 필요는 없어요.
앞으로는 각을 볼 때, 각이 나타내는 여러 가지 의미들을 잘 파악할 수 있어야 해요.
일반각
일반적으로 각은 두 직선 사이의 벌어진 정도를 말해요. 0° ~ 360° 사이의 각으로 나타내죠.
아래 그림에서 의 위치에서 점 O를 중심으로
가 회전할 때, 회전한 정도를 각의 크기라고 하고, 시작하는 선인
를 시초선, 움직이는 선인
를 동경이라고 해요.
우리가 이제까지 봐왔던 각은 방향을 고려하지 않았어요. 하지만 동경이 회전하는 방향도 중요하게 고려해야 할 요소예요. 동경 가 시계 반대방향으로 회전하면 양의 방향으로 회전한다고 하고, 시계 방향으로 회전하면 음의 방향으로 회전한다고 해요. 동경
가 양의 방향으로 회전하여 생긴 각을 양의 각, 음의 방향으로 회전해서 생긴 각을 음의 각이라고 합니다.
방향뿐 아니라 회전횟수에 대해서도 고려해 보죠. 동경 가 어떤 위치에 있을 때 몇 번 회전해서 현재 위치에 있는 지도 중요하겠죠?
첫 번째 그림에서 한 바퀴도 돌지 않고 각을 만들었다면 각의 크기는 30°라고 할 수 있어요. 하지만 두 번째 그림처럼 한 바퀴 돌고 각을 이루었다면 360° + 30°가 되고, 두 바퀴 돌고 각을 이루었다면 720° + 30°가 되겠죠?
같은 위치에 있는 동경이라고 하더라도 회전한 방향과 회전한 수에 따라 각의 크기가 달라져요. 그래서 동경의 위치만 보고 각의 크기를 나타낼 때는 θ = 360° × n + a° (n은 정수)라고 쓰는데 이를 일반각이라고 합니다.
일반각에서 a°는 양의 최소각을 말하고 대게 0° ~ 360°의 각을 이용해요. 360° × 2 + 1000° 이렇게 나타내지 않고 360° × 4 + 280°로 나타냅니다.
일반각
θ = 360° × n + a° (n은 정수)
0° ≤ a° < 360°
다음을 양의 최소각을 이용하여 일반각으로 나타내어라.
(1) 500°
(2) -500°
일반각은 360° × n + a°로 나타내는 데, 이때 n은 정수이고 0° ≤ a° < 360°의 범위를 가져요.
(1) 500° = 360° × 1 + 140°
(2) 번은 각의 크기는 500°로 같은데 (-)로 음의 각이에요. 회전한 방향이 반대란 얘기죠. n이 음수가 되겠네요.
-500° = 360° × (-1) - 140°
= 360° × (-2) + 220°
사분면 위의 각
좌표평면 위에서 x축의 양의 방향을 시초선으로 잡을 때 동경 가 있는 사분면의 위치에 따라 각을 제 1 사분면의 각, 제 2 사분면의 각, 제 3 사분면의 각, 제 4 사분면의 각이라고 불러요. 참고로 x, y축은 사분면에 포함되지 않아요.
위 그림에서 가 제 1 사분면에 있으니까 이 각은 제 1 사분면의 각이네요.
함께 보면 좋은 글
[중등수학/중1 수학] - 평각, 직각, 예각, 둔각
[중등수학/중1 수학] - 맞꼭지각, 동위각, 엇각
[중등수학/중1 수학] - 평행선의 성질, 평행선에서 동위각과 엇각