x의 증가량

이제 일차함수의 그래프를 직접 그려볼까요?

일차함수의 그래프를 그리는 방법은 이미 1학년 때 배워봤어요. 함수식이 주어지면 그 식에, x = 1, 2, 3, …을 넣어서 그때의 y값을 구했죠. 그리고 순서쌍을 이용해서 좌표평면에 점을 찍은 다음 그 점들을 이어서 그래프를 그려요. 함수 그래프, 함수의 그래프 특징 비교

기본 원리는 점들의 좌표를 구해서 점을 찍고, 선으로 연결하는 겁니다. 그런데 사실 점의 좌표가 많이 필요하지 않아요. 그냥 두 개만 있으면 직선을 그을 수 있거든요.

두 점을 이용해서 일차함수 그래프 그리기

직선이라는 게 점을 여러 개 연결해도 되지만 두 점을 연결해도 직선이 돼요. 따라서 1학년 때처럼 점들의 좌표를 여러 개 구할 필요 없이 딱 두 개만 구해서 직선으로 연결하면 돼요.

두 점의 좌표가 주어졌다면 점을 찍어서 직선을 그으면 되고, 점이 주어지지 않고, 함수식만 주어졌다면 x = 1, 2처럼 임의의 값을 두 개 넣어서 좌표를 구해서 점을 찍고, 선을 그어주면 돼요.

두 점 (1, 1)과 (3, 2)를 지나는 함수의 그래프를 그려라.

좌표평면 위에 두 점을 찍고 그냥 이어서 연결하세요.

두 점을 이용해서 일차함수의 그래프 그리기 1두 점을 이용해서 일차함수의 그래프 그리기 2

x절편, y절편을 이용해서 일차함수 그래프 그리기

마찬가지로 두 점의 좌표를 이용해서 그래프를 그리는 방법이에요.

두 개의 점의 좌표를 구할 때 아무 점이나 상관없지만 x절편, y절편을 구하는 방법도 좋아요. y 절편은 y = ax + b라는 함수식에서 b라는 걸 바로 알 수 있지요? 한 점의 좌표(0, b)를 금방 알아낼 수 있잖아요. 그럼 나머지 한 점의 좌표만 구하면 되는데, y = 0을 넣어서 구하면 x 절편이 나오죠.

문제에서 x, y 절편을 미리 알려주면 좋은 거고, 알려주지 않아도 다른 점의 좌표에 비해서 구하기가 쉬워서 많이 이용하는 방법이에요.

y = x + 2의 그래프를 그려라. (x절편과 y절편을 이용)

y = x + 2의 y 절편이 2이므로 y축과 만나는 점은 (0, 2), x 절편이 –2이므로 x축과 만나는 점은 (-2, 0)이네요. 두 점의 좌표를 구했으니 그래프를 그려보죠.

x절편, y절편을 이용해서 일차함수의 그래프 그리기 1x절편, y절편을 이용해서 일차함수의 그래프 그리기 2

y절편과 기울기를 이용해서 일차함수 그래프 그리기

y 절편은 함수식에서 바로 구할 수 있지요?

일차함수와 그래프에서 기울기가 나타내는 게 뭐죠?

일차함수의 그래프 - 기울기 공식

y = ax + b에서 y 절편이 b이므로 이 그래프는 (0, b)를 지나요. 기울기 a가 나태나는 건 x가 1 증가할 때, y는 a만큼 증가한다는 뜻이잖아요. 그래서 x가 0 → 1로 될 때, b → b + a 가 된다는 뜻이지요? 따라서 (0, b)와 (1, b + a)라는 점의 좌표를 구할 수 있다는 거예요. 물론 (1, b + a)가 아니라 (2, b + 2a), (3, b + 3a)라는 좌표를 구할 수도 있는 거지요. 어차피 두 점의 좌표만 있으면 되니까 아무거나 구해도 상관없어요.

두 점을 구했으니 좌표평면에 점을 찍고, 직선으로 연결하면 되겠지요?

y = 2x + 2의 그래프를 그려라. (기울기와 y절편을 이용)

y절편이 2이므로 이 그래프는 (0, 2)를 지나고 기울기가 2니까 x가 1 증가하면 y는 2 증가한다는 뜻이에요. x가 0 → 1이 되면, y는 2만큼 증가하니까 2 → 4가 되겠지요. 그래프가 지나는 두 점 (0, 2)와 (1, 4)를 구할 수 있어요.

y절편과 기울기를 이용해서 일차함수의 그래프 그리기 1y절편과 기울기를 이용해서 일차함수의 그래프 그리기 2

함께 보면 좋은 글

일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
함수 그래프, 함수의 그래프 특징 비교

정리해볼까요

일차함수의 그래프 그리기

  • 두 점의 좌표를 구해서 좌표평면에 표시한 다음, 직선으로 연결
  • 두 점을 구하는 방법
    • 임의의 값을 이용한 두 점
    • x, y 절편
    • y절편과 기울기를 이용한 다른 한 점
 

일차함수의 그래프에서 또 한가지 알아야 할 내용이 기울기에요.

일차함수 y = ax 그래프에서 a의 부호에 따라 그래프가 어떤 특징을 가졌는지 알아봤지요? 바로 a가 기울기입니다. 그래프의 특징에 아주 큰 영향을 미치니까 기울기에 대해서 꼭 알고 있어야겠죠?

함수식이 주어진 경우라면 a를 바로 구할 수 있지만, 식이 주어지지 않았다면 어떻게 a를 구하는지 알아볼까요.

일차함수의 기울기

기울기는 말 그대로 그래프가 기울어진 정도를 나타내는 용어에요. 그런데 얼마나 기울어졌는지를 각도로 표현하지 않고 숫자로 표현해요.

이 숫자를 구하는 방법이에요.

일차함수의 그래프 - 기울기 공식

그럼 x, y값의 증가량은 어떻게 구하느냐? 그래프에서 임의의 두 점 A(x1, y1), B(x2, y2)를 고르세요. 직선 위에 있는 점이면 아무 점이나 괜찮아요. 두 점의 (B점의 x 좌표 - A점의 x 좌표) 가 x의 증가량 (B점의 y 좌표 - A점의 y 좌표)가 y의 증가량입니다.

x, y의 증가량을 구할 때 주의해아 할 것은 x의 증가량을 구할 때 B에서 A를 뺐다면 y의 증가량을 구할 때도 B에서 A를 빼야 한다는 거예요. 큰 수에서 작은 수를 빼는 게 아니에요. 증가량이라고 표현했지만 실제로는 x, y이 변한 정도를 나타내는 말로 감소량을 포함하고 있는 거예요. 따라서 x, y의 증가량은 부호가 (-)일 수도 있고 둘의 부호가 다를 수도 있다는 점을 알아두세요.

다음 일차함수의 그래프를 보고 기울기를 구하여라.
x절편, y절편 구하기

위 그래프에는 기울기가 표시되어 있지만 직접 구해보죠. 그래프가 x축과 만나는 점, y축과 만나는 점의 좌표를 구할 수 있죠? (2, 0)과 (0, 2)입니다.

일차함수의 그래프 - 기울기 예제 풀이

두 점의 좌표를 이용해서 구한 기울기가 문제에서 주어진 함수식에서의 기울기와 같죠?

함께 보면 좋은 글

일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수 그래프 그리기
일차함수 y=ax+b 그래프의 특징

정리해볼까요

일차함수 그래프의 기울기

  • 함수식의 x의 계수
  • (y 값의 증가량) ÷ (x 값의 증가량)
  • (y2 - y1) ÷ (x2 - x1)
 

+ 최근글