진리집합

명제 p → q에서 가정인 p와 결론인 q는 조건이에요.

명제 p → q가 참이면 p와 q가 그냥 조건이 아니라 이름이 생겨요. 필요조건, 충분조건, 필요충분조건이라는 이름인데, 언제 어떤 경우에 이런 이름으로 부르는지 공부할 거예요.

또, 필요조건, 충분조건, 필요충분조건과 진리집합 사이의 관계도 알아볼거고요.

여기서는 부등식, 수직선과 관련된 문제들도 많이 나오니까 연립부등식, 연립부등식의 풀이했던 내용을 다시 한 번 떠올려보세요.

필요조건, 충분조건, 필요충분조건

명제의 참, 거짓, 반례에서 명제 p → q가 참일 때 기호로 p ⇒ q로 쓴다고 했죠? 이때, 조건 p를 q이기 위한 충분조건, 조건 q를 p이기 위한 필요조건이라고 해요.

화살표가 나가는 가정이 충분조건, 화살표를 받는 결론이 필요조건이죠.

가정        결론
p    ⇒    q
P    ⊂    Q
충분조건     필요조건

만약에 q → p라면 q는 p이긴 위한 충분조건, p는 q이기 위한 필요조건이에요.

p ⇔ q라면 어떨까요? 화살표는 주는 게 충분조건, 받는 게 필요조건인데, 이때 p와 q는 화살표를 주기도 하면서 받기도 하죠? 그래서 필요조건이면서 충분조건이므로 줄여서 p는 q이기 위한 필요충분조건이라고 해요. 마찬가지로 q도 p이기 위한 필요충분조건이에요.

진리집합

p의 진리집합을 P, q의 진리집합을 Q라고 할 때, p ⇒ q라면 P ⊂ Q에요. q ⇒ p라면 Q ⊂ P죠.

p ⇔ q라면 어떻게 될까요? P ⊂ Q이고, Q ⊂ P에요. 부분집합, 부분집합의 개수 구하기에서 A ⊂ B이고 B ⊂ A면 A = B라고 했죠? 따라서 p ⇔ q이면 P = Q에요.

P ⊂ Q이면 p는 q이기 위한 충분조건
P ⊂ Q이면 q는 p이기 위한 필요조건
P = Q이면 p는 q이기 위한 필요충분조건

조건은 필요조건, 충분조건, 필요충분조건 세 가지가 있어요. 이 중에서 필요충분조건은 진리집합이 서로 같은 경우라서 알아보기 쉬워요. 남은 건 충분조건과 필요조건인데, 둘 중 하나만 구별하는 법을 정확하게 알아두세요. 하나만 정확하게 파악하면 나머지 하나는 자동으로 결정되는 거잖아요.

충분조건: 가정, 화살표가 나가는 쪽, 부분집합
필요조건: 결론, 화살표를 받는 쪽, 부분집합을 포함하는 집합
필요충분조건: 충분조건 + 필요조건

두 조건 p: a ≤ x < 5, q: 3 < x ≤ b에서 조건 p가 q이긴 위한 필요조건이고, q는 p이기 위한 충분조건일 때, a, b의 범위를 구하여라.

p가 필요조건, q가 충분조건으로 필요조건인 p가 화살표를 받는 형태인 q ⇒ p이고, 진리집합은 Q ⊂ P에요. 부등식을 수직선에 나타내보면 쉬워요.

필요충분조건 예제 풀이

3 < x ≤ b가 a ≤ x < 5의 안에 들어가야 하니까 수직선으로 그려보면 위 그림처럼 돼요.

a는 3보다 왼쪽에 있으면 되는데, 3이 되어도 괜찮죠? Q에는 3이 포함되어 있지 않으니까요. 따라서 a ≤ 3이에요.

b는 5보다 왼쪽에 있으면 되는데, 5가 되면 안 돼요. Q에는 5가 들어있는데, P에 5가 들어있지 않으면 Q ⊂ P가 안 되잖아요. b < 5여야 하는데 여기에 3 < x이므로 b도 3보다 커야 해요. 따라서 3 < b < 5

함께 보면 좋은 글

부분집합, 부분집합의 개수 구하기
명제와 조건, 진리집합, 조건의 부정
명제의 참, 거짓, 반례
명제의 역, 이, 대우, 삼단논법

정리해볼까요

명제 p → q가 참일 때

  • p는 q이기 위한 충분조건.
  • q는 p이기 위한 필요조건.

p ⇔ q이면

  • p는 q이기 위한 필요충분조건
  • q는 p이기 위한 필요충분조건

조건과 진리집합

  • P ⊂ Q이면 p는 q이기 위한 충분조건
  • P ⊂ Q이면 q는 p이기 위한 필요조건
  • P = Q이면 p는 q이기 위한 필요충분조건
그리드형

명제의 참, 거짓, 반례

2013. 2. 23. 12:30

명제에는 진리집합이라는 게 있다고 했어요. 이 진리집합을 이용해서 명제의 참, 거짓을 판단해요. 진리집합을 이용하지 않고 반례를 이용하는 경우도 있고요. 두 가지 방법을 다 알고 있다가 문제에 맞게 편리한 방법을 사용하면 돼요.

개인적으로는 명제 단원에서 가장 어려운 내용이라고 생각하는 단원이에요. 명제의 참, 거짓을 판별하는 방법 자체는 어렵지 않지만, 실제 문제에서는 어려워지죠. 진리집합과 반례를 찾는 게 어렵거든요. 한 두 가지씩 빠뜨리는 실수가 많이 나오기도 해요.

반례를 찾는 건 연습이 많이 필요해요. 교과서나 익힘책의 문제를 많이 풀어보세요.

명제의 참, 거짓

두 조건 p, q가 "p이면 q 이다."의 꼴로 되어 있는 명제를 기호로 "p → q" 로 나타내요. 이때 p를 가정, q를 결론이라고 하죠.

명제의 가정과 결론

특히 명제 p → q가 참이면 화살표에 줄을 하나 더 그어서 명제의 참, 거짓 - 참라고 하고, 거짓이면 명제의 참, 거짓 - 거짓라고 해요. 또 p → q도 참이고, q → p도 참이면 명제의 참, 거짓라고 나타냅니다.

명제의 참, 거짓을 판별할 때는 진리집합을 이용하는 게 아주 좋아요. 진리집합의 부분집합의 성질을 이용하거나 벤다이어그램을 이용하는 거죠.

명제 p → q에서 조건 p의 진리집합을 P, 조건 q의 진리집합을 Q라고 할 때
명제의 참, 거짓 - 참이면 P ⊂ Q
명제의 참, 거짓 - 거짓이면 P 부분집합이 아님 Q

위 내용은 거꾸로도 성립해요. 부분집합이면 참, 부분집합이 아니면 거짓이죠.

"x = 1이면 x2 = 1이다."라는 명제가 참인지 거짓인지 알아보죠.

명제: x = 1이면 x2 = 1이다.
p q
조건 x = 1 x2 = 1
진리집합 P = {1} Q = {-1, 1}
부분집합 P ⊂ Q
참, 거짓

이번에는 p와 q를 바꿔서 "x2 = 1이면 x = 1이다."로 해볼까요?

명제: x2 = 1이면 x = 1이다.
p q
조건 x2 = 1 x = 1
진리집합 P = {-1, 1} Q = {1}
부분집합 P 부분집합이 아님 Q
참, 거짓 거짓

반례

명제의 참, 거짓을 알아내는 또 다른 방법은 반례를 이용하는 거예요. 반례는 명제가 거짓이라는 걸 보여주는 예에요.

"자연수 x에 대하여, x가 짝수이면 x < 10이다."라는 명제가 있다고 해보죠.

12, 14, 16, … 처럼 10보다 큰 짝수가 있어요. 따라서 명제가 틀렸어요. 이때, 10보다 크다고 보여줬던 짝수들의 예가 바로 반례에요.

명제가 거짓임을 밝히기 위해서 반례를 보여주면 되는데, 반례는 1개만 있으면 돼요. 위에서 12, 14, 16, …라는 반례를 보여줘도 되지만, 12라는 반례만 보여줘도 명제가 거짓이라는 걸 알 수 있죠?

명제의 참, 거짓
진리집합 이용 - P ⊂ Q이면 참 
반례가 1개라도 있으면 거짓

다음 명제의 참, 거짓을 밝혀라.
(1) x가 6의 약수이면 x는 12의 약수이다.
(2) xy > 0 이면 x > 0, y > 0이다.

(1)을 p → q라고 할 때 P = {1, 2, 3, 6}, Q = {1, 2, 3, 4, 6, 12}
P ⊂ Q이므로 p → q는 참

(2) 반례를 이용해 보죠. xy = 1일 때,  x = -1, y = -1이면 x < 0, y < 0이에요.
이 반례를 통해서 명제가 거짓이라는 걸 알 수 있어요.

모든, 어떤이 들어있는 명제의 참, 거짓

모든, 어떤이 들어있는 명제에서 참, 거짓을 확인하는 방법이에요.

"모든", "임의의"라는 단어가 들어간 명제에서는 그 식이 성립하지 않는 x가 하나도 없어야 참이에요. 즉 식이 성립하지 않는 x가 하나라도 있으면 거짓이라는 거죠. 이때 성립하지않는 x가 바로 반례에요.

"모든 실수 x에 대하여 x2 = 1이다."라는 명제가 있어요. x = 2이면 이 x2 = 1이라는 식이 성립하지 않죠. 따라서 이 명제는 거짓이고 이때 x = 2가 반례가 되는 거예요.

"어떤"이 들어가 있는 명제는 식을 만족하는 x가 하나라도 있으면 참이에요. 모든 x에 대해서 성립할 필요가 없어요.

"어떤 실수 x에 대하여 x2 = 1이다."라는 명제에서 x = 1이면 x2 = 1이 성립하죠. 따라서 이 명제는 참인 명제에요.

모든, 임의의 → 반례가 있으면 거짓
어떤 → 하나라도 성립하면 참

함께 보면 좋은 글

명제와 조건, 진리집합, 조건의 부정
명제의 역, 이, 대우, 삼단논법
필요조건, 충분조건, 필요충분조건
[중등수학/중2 수학] - 명제, 명제의 가정과 결론, 명제의 역

정리해볼까요

명제의 참, 거짓

  • 진리집합을 이용, p → q일 때, 조건 p의 진리집합을 P, 조건 q의 진리집합을 Q라고 하면
    P ⊂ Q이면 참
    P 부분집합이 아님 Q이면 거짓
  • 반례가 하나라도 있으면 거짓
 
그리드형

명제와 조건은 참 어려운 단원이에요. 개념이 중요한데다 실제 참, 거짓을 증명해야 하는 경우가 많거든요.

용어의 정의, 기호가 나타내는 것들을 하나도 놓치지 않고 생각해야 하는 단원이에요. 큰 게 아니라 자잘한 실수때문에 틀리는 문제가 많아서 좀 짜증나기도 하죠. 지금까지 공부했던 용어들과 기호들에 대해서 복습하는 단원이라고 생각하세요.

명제와 조건

명제는 참, 거짓을 판단할 수 있는 문장이나 식을 말해요.

"2는 소수다"라는 문장이 있어요. 이 문장은 참이죠? 그래서 명제에요. "3은 짝수다." 이 문장은 거짓이죠? 거짓이니까 명제에요. 명제는 참, 거짓을 판단할 수 있는 문장이므로 거짓인 문장도 명제에요. 거짓이면 명제가 아니라고 생각하는 경우가 많은데, 주의하세요.

"수학은 어렵다." 이 문장은 어떤가요? 학생 대부분은 수학이 어렵다고 생각할 거예요. 그런데 또 다른 학생들은 수학이 쉽다고 하는 학생도 있겠죠? 사람에 따라서 참, 거짓이 달라져요. 참, 거짓을 판단할 수 없죠. 따라서 이 문장은 명제가 아니에요.

명제, 참인 명제, 거짓인 명제

조건은 미지수를 포함하고 있어서 그 미지수의 값에 따라 참, 거짓이 판별되는 문장이나 식을 말해요.

"(x - 1)(x - 2) = 0"이라는 식은 x = 1, 2일 때는 참이지만, x = 3, 4, 5, … 이면 거짓이죠? x에 따라서 참, 거짓이 바뀌니까 이 문장은 조건이에요. 보통 조건에서 미지수로 x를 사용하니까 조건을 p(x), q(x), … 등으로 표시하는데, 간단히 p, q, … 로도 나타내요.

진리집합

조건은 미지수에 따라서 참, 거짓이 달라진다고 했어요. 이때 조건이 참이 되게 하는 미지수의 집합을 진리집합이라고 해요. 진리집합은 알파벳 대문자로 나타내는데, 조건 p의 진리집합은 P, 조건 q의 진리집합은 Q라고 써요. 특별한 언급이 없으면 전체집합 U는 실수 전체의 집합이라고 생각하면 돼요.

"(x - 1)(x - 2) = 0"이라는 조건에서 진리집합 P = {1, 2} 겠죠?

두 조건을 하나로 합쳐서 사용하는 경우도 있어요. p라는 조건과 q라는 조건을 합칠 때 "p 이고 q"라는 조건을 만들었다면 진리집합은 P ∩ Q가 돼요. p와 q라는 두 조건을 모두 만족하는 미지수여야 하니까요. "p 또는 q"라는 조건을 만들었다면 진리집합은 P ∪ Q가 돼요. p, q 중 하나만 만족해도 되거든요.

조건의 부정

조건의 부정은 말 그대로 조건을 반대로 얘기하면 돼요. 조건 p의 부정은 ~p라고 쓰고, not p라고 읽어요. 조건 q의 부정은 ~q라고 쓰고 not q라고 읽죠.

그럼 ~p의 부정은 뭘까요? ~(~p) = p에요. 진리집합을 생각해보세요. 부정은 진리집합에서 여집합이에요. (PC)C = P니까 ~(~p) = p가 되는 거예요.

(조건)과 (조건의 부정)은 서로 부정인 관계에요.

조건의 부정을 몇 가지 해볼까요?

조건의 부정
조건 조건의 부정 비고
=  
> 부등식의 표현
< 부등식의 표현
짝수 홀수 자연수일 때
양수 0과 음수  
유리수 무리수  
어떤 모든 "어떤 x에 대하여………" / "모든 x에 대하여"
이고 (and) 또는 (or) "p 이고 q" / "~p 또는 ~q"
적어도 하나는 맞다 모두 ~ 아니다.  
x = y = z x ≠ y 또는 y ≠ z 또는 z ≠ x x = y이고, y = z이고, z = x라는 세 조건의 결합

다음 조건의 부정을 말하여라.
(1) x = 1 또는 x = 2
(2) 1 < x ≤ 2
(3) 모든 실수 x에 대하여 (x - 1)2 ≥ 0이다.

"또는"의 부정은 "이고"에요.

(1)은 또는 이니까 "이고"로 바뀌어야겠죠? 그리고 =는 ≠로 바꾸고요.
"x = 1 또는 x = 2"의 부정은 "x ≠ 1 이고 x ≠ 2"가 되겠네요.

(2)는 1 < x 이고, x ≤ 2라는 두 개의 조건으로 나눌 수 있어요. 가운데가 "이고"니까 "또는"으로 바꿔야 하고, <는 ≥로, ≤는 >로 바꿔야 겠네요.
"1 < x ≤ 2"의 부정은 "1 ≥ x 또는 x > 2"

(3)은 모든이 있어요. "모든"의 부정은 "어떤"이에요. ≥의 부정은 <고요.
"모든 실수 x에 대하여 (x - 1)2 ≥ 0이다."의 부정은 "어떤 실수 x에 대하여 (x - 1)2 < 0이다."

부정하지 않는 것들

조건에서 부정을 할 때, 절대로 부정하면 안 되는 게 있어요. 바로 "수의 체계"에요.

"유리수 x에 대하여 x > 2이다"를 부정하면 "무리수 x에 대하여 x ≤ 2이다."가 아니라는 거예요. x가 포함되는 수의 체계는 부정하면 안 돼요. "유리수 x에 대하여 x ≤ 2 이다."가 제대로 된 부정이에요.

"양수 x에 대하여 …"에서 양수를 부정해서 "음수 또는 0 x에 대하여" 가 아니라 그대로 "양수 x에 대하여 …"에요.

"x가 무리수이다"을 부정하면 "x가 유리수이다"가 돼요." 위에서 수의 체계는 부정하지 않는다고 했는데, 여기서는 부정을 했어요.

위에서 수의 체계는 조건이 아니라 전제라서 부정하면 안 되고, 아래에 있는 문장에서는 수의 체계가 조건이니까 부정할 수 있는 거예요. 이 차이를 잘 구별하세요.

함께 보면 좋은 글

[중등수학/중2 수학] - 명제, 명제의 가정과 결론, 명제의 역
명제의 참, 거짓, 반례
명제의 역, 이, 대우, 삼단논법
필요조건, 충분조건, 필요충분조건

정리해볼까요

명제와 조건

  • 명제: 참, 거짓을 판단할 수 있는 문장이나 식
  • 조건: 미지수에 따라 참, 거짓이 달라지는 문장이나 식, p, q
  • 진리집합: 조건이 참이 되게 하는 미지수를 원소로 하는 집합
  • 조건의 p의 부정: ~p
<<  수학 1 목차  >>
 
그리드형

+ 최근글