복잡한 식의 인수분해

인터넷 사이트에 올라온 유머예요. 아마도 누군가 문제집에 나오는 문제를 보고 재미있어서 인터넷에 올렸나 봐요. 간단한 인수분해 문제인데 실생활과 연결지어서 문제를 냈더니 유머가 되어버렸어요.

수학과 관련된 유머가 몇 가지 있었죠? 물론 이번 문제는 문제 자체에 웃음을 짓는 경우라 풀이 때문에 웃었던 유머와 조금 다른 경우죠.

1초 고민하는 수학 문제
경우의 수 문제 푸는 법
끈기만 있으면 풀 수 있는 수학문제

딸이 집에 들어오는 게 싫은 아빠

딸이 집에 들어오는 게 싫은 아빠

 

문제는 길게 써놨는데 실제로는 아주 쉬운 문제예요. 식도 알려줬고 결과도 알려줬으니까요.

일단 ab월 cd일이니까 월과 날짜를 나타내는 a, b, c, d는 양수여야 해요. 그리고 10월 10일이나 01월 01일일 수도 있으니 0도 괜찮죠. 그러니까 a, b, c, d ≥ 0이에요.

첫 번째 식을 먼저 보죠.

(x2 - 2x)2 + x2 - 2x - 2 = (x22 - 2x - a)(x2 - 2x + b)

좌변을 전개하면 4차식이 되니까 전개한 후에 인수분해하는 것보다는 괄호로 묶은 부분을 치환해서 푸는 게 더 쉬워요. 복잡한 식의 인수분해 1 - 공통인수로 묶기, 치환

(x2 - 2x)2 + x2 - 2x - 2
= (x2 - 2x)2 + (x2 - 2x) - 2
= t2 + t - 2                                    (∵ x2 - 2x = t 치환)
= (t - 1)(t + 2)
= (x2 - 2x - 1)(x2 - 2x + 2)              (∵ t = x2 - 2x)

상수항을 비교해보면 a = 1, b = 2 or b = -1, a = -2인데, a ≥ 0, b ≥ 0이므로 a = 1, b = 2에요.

두 번째 식을 보죠.

2x2 + xy - 7x - 3y + 3 = (x - 3)(cx + y - d)

좌변에 항이 다섯 개나 있어요. 이럴 때는 차수가 낮은 한 문자를 선택해서 내림차순으로 정리한 다음에 인수분해를 해요. 복잡한 식의 인수분해 - 항이 4개 이상일 때

2x2 + xy - 7x - 3y + 3
= xy - 3y + 2x2 - 7x + 3                      (∵ 차수가 낮은 y에 대하여 내림차순 정리)
= (x - 3)y + (2x - 1)(x - 3)
= (x - 3)(y + 2x - 1)
= (x - 3)(2x + y - 1)

c는 x의 계수니까 c = 2, d는 상수항이니까 d = 1이에요.

결국 abcd = 1221이네요.

여러 분이 미래라면 집에 들어가는데 얼마나 걸릴까요? ㅎㅎ

참고로 이 문제는 고등학교에 올라가면 배우는 미정계수법 - 계수비교법, 수치대입법이라는 방법을 이용해서도 풀 수 있어요.

함께 보면 좋은 글

인수분해 공식 - 완전제곱식, 합차공식
인수분해 공식 두 번째
복잡한 식의 인수분해 1 - 공통인수로 묶기, 치환
복잡한 식의 인수분해 2 - 항이 4개 이상일 때
인수분해의 활용 - 수의 계산, 식의 값

 
그리드형

인수분해는 중학교에서 했던 것과 지금 하는 것에 차이가 거의 없어요. 문제가 어려워진 것뿐이에요. 복잡한 식의 인수분해도 똑같아요. 진짜 어려웠던 문제들이 이제는 기본문제(?)로 바뀐 거지요.

복잡한 식의 인수분해는 원리도 똑같고, 인수분해를 하는 방법도 똑같아요. 중학교 때 공부했던 내용을 하나씩 잘 떠올려 보세요.

모든 인수분해의 첫 번째는 공통인수로 묶는 거예요. 그다음에 아래의 방법들을 사용하는 거지요.

복잡한 식의 인수분해

치환

치환은 특정한 부분을 다른 문자로 바꿔 계산하는 걸 말하죠. 그리고 계산이 끝나면 바꿨던 문자에 원래 식을 대입해야 하고요.

대부분 여러 항에 공통으로 들어있는 부분을 치환하는데 공통부분은 괄호가 처져 있어서 눈에 잘 띄어요. 괄호가 처져 있는 공통부분이 보이지 않는다면 공통부분이 생기도록 만들어야 하는데 이게 연습이 좀 필요해요. 대체로 한 부분 정도는 괄호로 처져 있는 게 있으니까 다른 부분에서도 괄호로 처진 부분이 나오도록 식의 모양을 바꿔야 해요.

꼭 공통부분이 아니더라도 치환을 할 수 있어요. 식이 너무 길어질 것 같으면 서로 다른 부분이라도 치환할 수 있는데, 이때는 서로 다른 문자로 치환해야 해요.

  • 공통부분이 있으면 바로 치환
  • 공통부분이 없으면 전개 or 변형해서 치환
  • 서로 다른 부분을 서로 다른 문자로 치환

△ABC의 변의 길이를 각각 a, b, c라고 할 때 a2(b - c) + b2(c - a) + c2(a - b) = 0이 성립한다. △ABC는 어떤 삼각형인가?

일단 공통인 부분이 없어요. 괄호로 쳐진 부분이 세 개나 있지만 다 다르고요. 그렇다고 a2X + b2Y + c2Z처럼 각각을 다른 문자로 치환한다고 해도 인수분해를 할 수 있는 것도 아니에요. 이럴 때는 아무거나 괄호를 하나 선택하고, 나머지 부분에서 괄호부분이 나오게 변형을 해서 치환을 해야 해요. 가장 앞에 있는 (b - c)를 선택하고 남은 부분을 전개해서 (b - c)가 나오도록 변형을 해보죠.

a2(b - c) + b2(c - a) + c2(a - b)
= a2(b - c) + b2c - ab2 + ac2 - bc2
= a2(b - c) + b2c - bc2 - ab2 + ac2
= a2(b - c) + bc(b - c) - a(b2 - c2)
= a2(b - c) + bc(b - c) - a(b + c)(b - c)
= a2t + bct - a(b + c)t                         (∵ b - c = t로 치환)
= t{a2 + bc - a(b + c)}
= t{a2 - (b + c)a + bc}
= t(a - b)(a - c)
= (b - c)(a - b)(a - c)                        (∵  t = b - c)
= -(a - b)(b - c)(c - a)

-(a - b)(b - c)(c - a) = 0이 성립하므로 a - b = 0이거나 b - c = 0이거나 c - a = 0이어야 하죠. 즉, a = b or b = c or c = a이라는 얘기네요. a = b = c일 수도 있고요.

따라서 △ABC는 이등변삼각형이거나 정삼각형이네요.

복이차식

복이차식은  2차, 4차처럼 짝수차 항으로만 되어 있는 식을 말해요. 상수항은 0차니까 짝수차 항으로 볼 수 있어요. 이때는 x2 = t로 치환해서 풀면 쉬워요.

x2 = t로 치환을 해도 안되는 경우가 있어요. 이때는 완전제곱식을 만들어서 인수분해해요. 완전제곱식을 만들 때는 완전제곱식을 이용한 이차방정식의 풀이에서 했던 것처럼 일차항과 상수항의 관계를 이용해요. 완전제곱식을 이용한 이차방정식의 풀이에서는 일차항을 기준으로 놓고, 상수항을 더해주고 빼서 완전제곱식을 만들었는데, 복이차식에서는 상수항을 기준으로 놓고, t항을 더해주고 빼서 완전제곱식을 만드는 점이 달라요.

이차방정식이 중근을 가질 조건

이렇게 완전제곱식을 만들면 A2 - B2꼴로 모양이 바뀌는데, 인수분해 공식 - 합차공식을 이용해서 인수분해를 합니다.

  • 복이차식: x2 → t로 치환
    • 인수분해되면 인수분해
    • 인수분해 안 되면 t항을 적당히 더해주고 빼서 A2 - B2로 변형 → 합차공식으로 인수분해

다음을 인수분해 하여라.
(1) x4 + x2 - 20
(2) x4 + 6x2 + 25

x4 + x2 - 20
= t2 + t - 20                  (∵ x2 = t로 치환)
= (t - 4)(t + 5)
= (x2 - 4)(x2 + 5)          (∵ t = x2)
= (x - 2)(x + 2)(x2 + 5)

(2)에서 x2 = t로 치환하면 식은 t2 + 6t + 25가 돼요. 이건 인수분해가 안되죠? 그래서 t의 일차항과 상수항 사이의 관계를 이용해서 적당한 t항을 더해주고 빼줘야 해요.

x4 + 6x2 + 25
= t2 + 6t + 25                 (∵ x2 = t로 치환)
= t2 + 6t + 25 + 4t - 4t
= t2 + 10t + 25 - 4t
= (t + 5)2 - 4t
= (x2 + 5)2 - 4x2          (∵ t = x2)
= (x2 + 5)2 - (2x)2
= (x2 + 5 + 2x)(x2 + 5 - 2x)
= (x2 + 2x + 5)(x2 - 2x + 5)

한 문자에 관하여 내림차순으로 정리

치환할 부분도 얼른 보이지 않고, 항이 많이 있으면 차수가 낮은 한 문자에 관하여 내림차순으로 정리하세요. 여러 문자 중 차수가 가장 한 문자를 선택하는데, 차수가 같으면 아무거나 골라도 상관없어요.

내림차순으로 정리하면 상수항 부분 (선택한 문자가 아닌 다른 문자 포함)이 인수분해가 되는데, 이를 이용해서 또 한 번 인수분해를 해야 해요. 상수항 부분을 인수분해한 것이 다항식이라서 두 번째 인수분해할 때 조금 어려울 수 있어요.

차수가 낮은 한 문자에 대해서 내림차순으로 정리
상수항 부분을 인수분해 후 전체를 인수분해

x2 + xy - 2y2 - x + 7y - 6을 인수분해하여라.

식이 기니까 한 문자에 관해서 내림차순으로 정리를 해야 하는데, x도 2차, y도 2차니까 아무거나 선택하면 돼요. x를 골라보죠.

x2 + xy - 2y2 - x + 7y - 6
= x2 + xy - x - 2y2 + 7y - 6
= x2 + (y - 1)x - (2y2 - 7y + 6)
= x2 + (y - 1)x - (2y - 3)(y - 2)
= {x + (2y - 3)}{x - (y - 2)}
= (x + 2y - 3)(x - y + 2)

함께 보면 좋은 글

인수분해, 인수분해 공식(고1)
인수정리를 이용한 인수분해
[중등수학/중3 수학] - 복잡한 식의 인수분해 1 - 공통인수로 묶기, 치환
[중등수학/중3 수학] - 복잡한 식의 인수분해 2 - 항이 4개 이상일 때

정리해볼까요

치환

  • 공통부분 치환
  • 공통부분 없으면
    • 서로 다른 부분을 서로 다른 문자로 치환
    • 괄호로 쳐진 영역을 하나 선택하고 식의 다른 부분을 전개해서 공통영역을 만들어서 치환

복이차식: 짝수차 항으로만 되어 있는 식

  • x2 = t로 치환
    • 인수분해
    • 인수분해가 안되면 t항을 적당히 더하고 빼서 완전제곱식으로 인수분해 → A2 - B2꼴로 변형 후 인수분해

한 문자에 관해서 내림차순으로 정리

  1. 차수가 가장 낮은 한 문자에 관해서 내림차순으로 정리
  2. 상수항 부분을 인수분해
  3. 전체를 인수분해
<<  수학 1 목차  >>
 
그리드형

앞에서는 항의 개수가 3개 이하일 때를 해봤는데, 이제는 항의 개수가 4개 이상인 복잡한 식의 인수분해입니다.

항의 개수가 늘어나면 늘어난 만큼 식도 복잡해지고 계산 방법도 복잡해져요. 복잡한 식의 인수분해 1 - 공통인수로 묶기, 치환에서는 식의 모양을 바꾸서 인수분해를 했었는데, 이 글에서는 두 번의 인수분해 과정을 거쳐야 답이 나오는 경우에요.

그리고, 앞에서 공부했던 인수분해의 공식과 원리가 총 동원된 문제들이 나옵니다. 제법 어려운 문제들이니 틀리지 않게 주의해서 잘 보세요.

항이 4개 일 때

항이 네 개일 때, 모든 항에 공통인수가 있으면 공통인수로 묶으세요. 4개의 항에 공통인수가 없을 때는 다른 방법을 사용해야 해요.

2-2로 짝짓기

4개 모두에 해당하는 공통인수가 없다면 2개씩 짝을 짓고, 각 쌍을 공통인수로 묶어요. 각각을 공통인수로 묶어서 두 개의 항으로 만들면 다시 공통인수가 생기는데, 그때 다시 공통인수로 묶어주면 돼요.

xy - x - y + 1을 보죠. 항은 4개인데, 4개 항에 모두 공통으로 들어있는 인수가 없어요. 2개씩 묶어보죠.
xy - x - y + 1
= (xy - x) + (-y + 1)
= x(y - 1) - (y - 1)

앞 두 개의 항에는 x라는 공통인수가 있고, 뒤 두 개의 항에는 (-1)이라는 공통인수가 있어요. 각각을 따로 인수분해했더니 양쪽 모두에 (y - 1)이라는 항이 있네요. y - 1 = t로 치환해보죠.

= xt - t
= (x - 1)t
= (x - 1)(y - 1)

y - 1 = t이므로 마지막 줄에서 원래 값을 대입했더니 인수분해가 끝났어요. 계산에 익숙해지면 이 정도 식은 따로 치환하는 식을 넣지 않고도 바로 계산할 수 있을 거예요.

  1. 4개의 항을 2개씩 2쌍으로 짝짓기
  2. 각 쌍에서 공통인수를 찾아서 각각을 인수분해
  3. 두 쌍에서 공통인수를 찾아서 한 번 더 인수분해

3-1로 짝짓기

x2 - 6x + 9 - y2
= (x2 - 6x) + 9 - y2
= x(x - 6) + (3 + y)(3 - y)

4개의 항이 있어서 앞의 두 개, 뒤의 두 개의 항으로 묶어서 해봤는데, 인수분해가 안 돼요. 방법이 틀렸다는 얘기예요. 이때는 2개씩 짝을 짓는 것 말고 다른 방법을 써야 해요.

앞의 3개와 뒤의 1개를 따로 짝을 지어보죠.

x2 - 6x + 9 - y2
= (x2 - 6x + 9) - y2
= (x - 3)2 - y2
= (x - 3 + y)(x - 3 - y)
= (x + y - 3)(x - y - 3)

앞의 세 개와 뒤의 하나로 짝을 지었더니 인수분해가 되네요. 경우에 따라서는 앞의 한 개와 뒤의 3개를 짝 지어야 하는 경우도 있어요. 이런 경우는 대부분 한 개짜리가 제곱이고, 세 개짜리는 완전제곱식이며 이 둘은 (제곱 - 제곱)의 형태가 될 때가 많아요.

3 - 1로 할 건지, 1 - 3으로 할 건지는 일차항을 보면 쉽게 판단할 수 있어요. 예를 들어 x, y의 문자가 모두 들어있는 식에서 x의 일차항이 있으면 x2, x, 상수항의 3개를 묶고, 남은 y항을 하나로 해요.

x2 - 2x - 8 - y2 에서는 일차항이 -2x이므로 x2, -2x, -8을 묶어요.
x2 - y2 + 2y + 8에서는 일차항이 2y이므로 -y2, 2y, 8을 묶으세요.

  1. 3 - 1 로 짝짓기
  2. 3 개짜리 항을 완전제곱식으로 인수분해
  3. 1개짜리 항과 ②의 완전제곱식을 합차공식으로 인수분해

항이 5개 이상일 때

항이 5개 이상인 경우는 많이 나오는 경우는 아닌데, 그래도 알아 두면 좋아요. 이때는 문자의 차수가 가장 낮은 한 문자를 선택해서 그 문자에 대해 차수가 높은 순에서 낮은 순서로 항들의 위치를 바꾼 다음에 인수분해를 합니다. 차수가 높은 순에서 낮은 순으로 쓰는 걸 내림차순으로 정리한다고 표현해요.

이때, 선택한 문자가 들어있지 않은 항은 모두 상수항 취급하세요. 예를 들어 y라는 문자를 선택했다면 x2항도 상수항이에요.

x2 + xy - 5x - 2y + 6를 볼까요?

항이 5개, 문자는 x, y의 2개예요. 복잡하네요. x는 2차, y는 1차죠? 그렇다면 차수가 낮은 y를 선택하고 차수가 높은 것에서 낮은 순서대로 항의 위치를 바꿔요. 우선 y의 1차인 xy, -2y를 먼저 쓰고 나머지를 그 뒤에 쓰죠.

x2 + xy - 5x - 2y + 6
= xy - 2y + x2 - 5x + 6

순서를 바꾸고 보니까 앞의 두 항에는 y라는 공통인수가 들어있고, 뒤의 세 항은 인수분해가 되네요. 정리해보죠.
= y(x - 2) + (x - 2)(x - 3)

정리하고 보니까 (x - 2)라는 부분이 양쪽 모두에 들어있죠? x - 2 = t라고 치환하죠.
= yt + t(x - 3)
= t(y + x - 3)
= (x - 2)(y + x - 3)

한꺼번에 모아서 다시 써볼게요.

x2 + xy - 5x - 2y + 6
= xy - 2y + x2 - 5x + 6         ∵ y에 대해서 내림차순 정리
= y(x - 2) + (x - 2)(x - 3)    ∵ 공통인수로 묶기, 인수분해
= yt + t(x - 3)                    ∵ x - 2 = t로 치환
= t(y + x - 3)
= (x - 2)(y + x - 3)              ∵ t = x - 2 대입

복잡한 과정을 거쳐서 인수분해를 할 수 있었어요.

항이 5개 이상일 때: 차수가 가장 낮은 문자에 대하여 내림차순으로 정리 후 인수분해

참고로 항이 4개인데, 2 - 2, 3 - 1로 묶이지 않을 때에도 한 문자에 관하여 내림차순으로 정리해보면 묶을 수 있는 경우가 있어요. 이 점도 기억해두세요.

다음을 인수분해 하여라.
(1) 3xy - 6y2 - x + 2y
(2) 9x2 - 4y2 + 16y - 16
(3) x2 + xy - x - 2y - 2

(1)은 네 개의 항으로 되어있어요. 네 항 모두에 들어있는 공통인수가 없기때문에 앞의 두 개와 뒤의 두 개를 따로 따로 인수분해해보죠.
3xy - 6y2 - x + 2y
= 3y(x - 2y) - (x - 2y)
= (3y - 1)(x - 2y)

(2)는 앞의 두 개, 뒤의 두 개로 나누어도 공통인수가 없어요. 다른 방법을 해야한다는 뜻이에요. 3 - 1로 묶어보죠. 그런데, 뒤에 2, 3번째 항에 y라는 문자가 들어있으니까 앞의 하나와 뒤의 세 항으로 나누어 묶어보죠.
9x2 - 4y2 + 16y - 16
= (3x)2 - 4(y2 -4y + 4)
= (3x)2 -4(y - 2)2
= (3x)2 - {2(y - 2)}2
= {3x + 2(y - 2)}{3x - 2(y - 2)}
= (3x + 2y - 4)(3x - 2y + 4)

(3)번은 항이 다섯개나 있네요. 이 때는 차수가 낮은 한 문자를 선택해서 내림차순으로 정리를 해요. x는 이차, y는 일차이므로 y의 내림차순으로 정리해보죠.
x2 + xy - x - 2y - 2
= xy - 2y + x2 - x - 2
= (x - 2)y + (x - 2)(x + 1)
= (x - 2)(y + x + 1)

정리해볼까요

복잡한 식의 인수분해

  • 항이 4개 일 때
    2 - 2로 묶어서 각각을 인수분해 → 각 쌍을 하나의 항으로 생각하고 다시 인수분해
    3 - 1로 묶기: 3개의 항은 완전제곱식, 1개의 항은 제곱으로 (제곱 - 제곱)의 꼴
  • 항이 5개 일 때
    차수가 가장 낮은 한 문자에 대해서 내림차순으로 정리 후 인수분해
 
그리드형

인수분해는 곱셈공식의 반대과정이니까 곱셈공식 - 완전제곱식곱셈공식 두 번째 - 합차공식만 잘 외우고 있으면 반은 먹고 들어가는 단원이에요. 그렇다고 해서 인수분해 공식만 외우고 문제는 풀지 못하는 상황에 빠지면 안돼요. 공식을 외우는 건 계산을 쉽고 빠르게 하기 위해서니까요. 공식을 외우는 게 목적이 되어서는 안돼요.

이 글은 복잡한 식의 인수분해 방법 첫번째에요. 문제 자체에 공식을 바로 적용할 수 없으니 공식을 적용할 수 있도록 식의 모양을 바꾸는 방법을 공부할 겁니다. 처음 보면 복잡해보이지만 몇 가지 방법만 알면 기존에 외우고 있는 공식을 바로 써먹을 수 있으니까 너무 걱정하지 마세요.

복잡한 식의 인수분해

공통인수로 묶기

복잡한 식을 인수분해를 할 때 가장 먼저 해야할 일은 모든 항에 들어있는 공통인수로 묶는 것이에요. 일단 공통인수로 묶으면 남은 것들끼리 인수분해 공식을 이용해서 인수분해 할 수 있어요. 공통인수는 숫자일 수도 있고, 문자일 수도 있고, 숫자와 문자가 함께 있을 수도 있어요.

2x3y + 4x2y2 + 2xy3을 해보죠. 모든 항에 2xy가 들어있어요. 2xy로 묶어보죠.

2x3y + 4x2y2 + 2xy3
= 2xy(x2 + 2xy + y2)
= 2xy(x + y)2                 ∵괄호안이 완전제곱식

2xy로 묶지않고 인수분해를 하려 했다면 할 수가 없었겠죠?

복잡한 식의 인수분해 1
공통인수로 묶기 → 인수분해 공식 사용

치환

치환은 바꾸는 걸 말해요. 식 안에 길이가 긴 내용을 짧은 다른 문자로 바꾸는 거죠. 치환은 2학년 곱셈공식 - 다항식 × 다항식을 공부할 때 이미 한 번 본 적이 있어요. 치환이라는 용어를 사용하지 않았을 뿐이에요.

a(a + b) - b(a + b)라는 식이 있다고 해보죠. 괄호를 전개해서 해볼까요?
a(a + b) - b(a + b)
= a2 + ab - ab - b2
= a2 - b2
= (a + b)(a - b)

복잡하죠? 문제에서 (a + b)라는 괄호로 묶어진 항을 t라는 문자로 바꿔보죠. (a + b) = t
a(a + b) - b(a + b)
= at - bt
= (a - b)t            ∵t는 공통인수
= (a - b)(a + b)    ∵a + b = t 이므로

두 번째 줄에서 (a + b) = t라고 놓으니까 두 항에 모두 t라는 공통인수가 들어있네요. 인수분해가 훨씬 쉬워졌죠? 그리고 t라는 문자에 원래 값인 (a + b)를 넣어줬더니 괄호를 전개해서 정리하고 인수분해한 것과 같죠?

치환을 하면 식의 길이도 짧아지고 차수도 낮아지는 장점이 있어서 계산할 때 많이 사용하는 방법이에요. 주의해야할 건 치환을 한 후에 답을 쓸 때는 대신 썼던 문자를 원래 값으로 바꿔줘야 한다는 거에요. 위에서도 마지막 줄에 t = (a + b)를 넣는 것까지 해야 계산이 끝나는 거에요. (a - b)t 라고 쓰면 틀립니다.

그리고 치환을 할 때 사용하는 문자는 t뿐 아니라 A, B 등 아무거나 상관없어요. 문제에 나와있지 않은 문자면 돼요.

(2a - b)2 - 2(2a - b) - 8을 인수분해 해볼까요? 이 식도 마찬가지로 전개하지 않고 (2a - b) = t라고 치환해보죠.
(2a - b)2 - 2(2a - b) - 8
= t2 - 2t - 8
= (t - 4)(t + 2)
= (2a - b - 4)(2a - b + 2)

2a - b를 t라는 문자로 치환한 다음에 계산을 하고, 마지막에 t에 원래 값인 2a - b를 대입했더니 인수분해가 됐네요.

이번에는 (x + 1)2 - (y - 1)2을 해보죠. 괄호로 묶어진 (x + 1) = A, (y - 1) = B라고 치환해보죠. 괄호 안의 내용이 서로 다르니까 다른 문자로 치환했어요.

(x + 1)2 - (y - 1)2
= A2 - B2
= (A + B)(A - B)
= {(x + 1) + (y - 1)}{(x + 1) - (y - 1)}
= (x + y)(x - y + 2)

복잡한 식의 인수분해 2 - 치환
식의 일부를 다른 문자로 바꾸어 계산 → 계산 후 바꾼 문자에 원래 값 대입
여러 항에 공통으로 들어있는 부분이나 괄호로 묶어진 곳을 치환

다음 식을 인수분해 하여라.
(1) a3b - 3a2b - 18ab
(2) (3a + 2)2 + 4(3a + 2) + 3
(3) xy(x + 2)2 - xy(y + 2)2

인수분해의 시작은 공통인수로 묶는 거에요. 공통인수로 묶은 후에 인수분해 공식을 사용해요. 공통인수로 묶어지지 않는다면 바로 인수분해 공식을 사용하거나 치환 등을 이용해서 인수분해 합니다.

(1) a3b - 3a2b - 18ab
ab(a2 - 3a - 18)        ∵ ab가 공통인수
= ab(a - 6)(a + 3)

(2) (3a + 2)2 + 4(3a + 2) + 3
= t2 + 4t + 3                     ∵ 3a + 2 = t로 치환
= (t + 1)(t + 3)
= (3a + 2 + 1)(3a + 2 + 3)  ∵ 원래 값 대입. t = 3a + 2
= (3a + 3)(3a + 5)
= 3(a + 1)(3a + 5)            ∵ 3이 공통인수

(3) xy(x + 2)2 - xy(y + 2)2
= xy{(x + 2)2 - (y + 2)2}    ∵ xy가 공통인수
= xy(A2 - B2)                  ∵ A, B로 치환
= xy(A + B)(A - B)
= xy{(x + 2) + (y + 2)}{(x + 2) - (y + 2)}
= xy(x + y + 4)(x - y)

정리해볼까요

복잡한 식의 인수분해

  • 공통인수로 묶은 후 인수분해 공식을 사용하여 인수분해
  • 공통인 항이나 괄호로 묶어진 부분을 다른 문자로 치환하여 인수분해
 
그리드형

+ 최근글