행렬의 실수배는 이름 그대로 행렬에 실수를 곱한 거예요. 그냥 곱하기라서 굉장히 쉬워요. 이제까지 해왔던 다항식과 숫자의 곱과 아주 많이 비슷하니까 특별히 더 공부할 것도 없어요.
행렬의 실수배에 대한 성질에 대해서도 알아볼 거예요. 성질이라고 해서 외울 필요는 없고 그냥 계산하다 보면 자연스럽게 익히게 될 거예요.
행렬의 실수배는 그냥 숫자와 행렬을 곱하는 거라서 앞으로 공부할 행렬끼리 곱하는 것과 차이가 있으니 잘 구별하세요.
행렬의 실수배
행렬 A의 각 성분에 실수 k를 곱한 것을 각 성분으로 하는 행렬을 행렬 A의 k배라고 하고 기호로 kA로 나타내요. kA 사이에는 곱셈기호가 생략되어 있고요.
이고 k가 실수일 때
행렬을 다항식이라고 생각하면 행렬 앞의 괄호를 그냥 다항식에서의 괄호라고 여기고 괄호 앞에 실수 k가 있다고 할 수 있어요. 그리고 마치 분배법칙처럼 괄호 앞의 k를 괄호 안의 모든 성분에 곱해주는 거죠.
행렬의 실수배에 대한 성질
행렬의 실수배는 다음과 같은 성질을 가져요.
행렬 A, B가 같은 꼴이고, k, l이 실수일 때
1A = A, (-1)A = -A
0A = O, kO = O
k(lA) = (kl)A
(k + l)A = kA + lA
k(A + B) = kA + kB
첫 번째는 1과 (-1)을 곱하는 거네요.
두 번째는 행렬 A의 모든 성분에 0을 곱하니까 모든 성분이 0이 되어 영행렬 O가 되는 거고요. 영행렬의 모든 성분은 0이니까 어떤 실수를 곱해도 그대로 0이라서 그 결과도 영행렬이 되지요.
세 번째는 실수의 결합법칙이 그대로 적용된다는 뜻이에요.
네 번째, 다섯 번째만 증명해볼까요? 이라고 해보죠.
∴ (k + l)A = kA + lA
∴ k(A + B) = kA + kB
일 때 다음을 구하여라.
(1) 2(A + B) - B
(2) 2(A - 2B) + 3(2A + B)
주어진 식을 먼저 간단히 한 후에 행렬을 대입해야 해요.
(1)
(2)
함께 보면 좋은 글
행렬, 행렬의 뜻, 정사각행렬
행렬의 성분, 두 행렬이 서로 같을 조건
행렬의 덧셈과 뺄셈, 행렬의 덧셈에 대한 성질
영행렬, 행렬의 덧셈에 대한 항등원과 역원