배수
다항식의 최대공약수와 최소공배수의 활용
다항식의 약수와 배수, 최대공약수와 최소공배수에서 다항식에서도 약수와 배수가 있다고 했어요. 그리고 최대공약수와 최소공배수를 구하는 방법을 공부했고요.
이 글에서는 최대공약수와 최소공배수 사이에 어떤 관계가 있는지 알아보고, 이를 이용해서 문제를 풀어볼 거예요.
최대공약수와 최소공배수의 관계는 [중등수학/중1 수학] - 최대공약수와 최소공배수의 관계에서 공부한 적이 있어요. 원리는 같은데, 중학교 때는 숫자를 이용했다면 이제는 다항식을 이용하는 거죠.
추가로 다항식의 합과 차, 곱, 최대공약수, 최소공배수 사이의 관계도 공부할 거예요.
다항식의 최대공약수와 최소공배수의 활용
두 다항식 A, B의 최대공약수를 G, 최고공배수를 L이라고 하면
a, b는 서로소
최대공약수 = G
최소공배수 L = abG
A를 G로 나눈 몫이 a니까 A = aG, B를 G로 나눈 몫이 b니까 B = bG 가 되겠죠?
A, B의 사칙연산을 해보죠.
- A + B = aG + bG = (a + b)G
- A - B = aG - bG = (a - b)G
- AB = aG × bG = abG2 = LG
- A ÷ B = aG ÷ bG = a/b
두 다항식의 사칙연산을 해보면, 덧셈, 뺄셈, 곱셈에 최대공약수인 G가 들어있다는 걸 알 수 있어요. 나눗셈에는 들어있지 않네요. 특히 두 다항식을 곱한 것과 최대공약수와 최소공배수를 곱한 게 같다는 것도 알 수 있어요.
A ± B = (a ± b)G
AB = LG → 두 다항식의 곱 = (최대공약수) × (최소공배수)
이차항의 계수가 1인 두 이차식 A, B의 최대공약수가 x - 1, 최소공배수는 x3 + 4x2 + x - 6일 때, 두 다항식 A, B를 구하여라.
A = aG, B = bG, G = x - 1, L = abG = x3 + 4x2 + x - 6이에요. (a, b는 서로소)
L을 인수정리를 이용한 인수분해를 해보죠. L은 G를 인수로 가지니까 x - 1로 나누어떨어져요.
L = (x - 1)(x2 + 5x + 6)
= (x - 1)(x + 2)(x + 3)
L = abG로 G = x - 1이니까 x - 1을 제외한 나머지 두 인수가 ab에 해당하겠죠? 둘 중 하나를 a라고 하면 나머지 하나는 b가 될 거예요. a = (x + 2), b = (x + 3)이라고 해보죠. a, b를 바꿔도 상관은 없어요.
A = aG = (x - 1)(x + 2), B = bG = (x - 1)(x + 3)이네요.
이차항의 계수가 1인 두 이차식의 곱이 x4 - 9x2 + 4x + 12이고, 최대공약수가 일차식일 때, 두 다항식의 합을 구하여라.
두 다항식을 A, B, 두 다항식의 최대공약수를 G, 최소공배수를 L이라고 해보죠. A = aG, B = bG, A + B = (a + b)G, AB = abG2 = LG예요.
AB를 인수정리를 이용한 인수분해로 인수분해 해볼까요?
AB = x4 - 9x2 + 4x + 12
= (x + 1)(x - 2)(x2 + x - 6)
= (x + 1)(x - 2)(x - 2)(x + 3)
= (x - 2)2(x + 1)(x + 3)
AB = abG2이므로 일차식의 제곱인 (x - 2)가 G에 해당하고, 남은 인수가 a, b겠죠. a = x + 1, b = x + 3이라고 해보죠. 물론 a, b가 바꿔도 상관없어요.
A + B = (a + b)G = (x + 1 + x + 3)(x - 2) = (2x + 4)(x - 2) = 2(x + 2)(x - 2)
함께 보면 좋은 글
다항식의 약수와 배수, 최대공약수와 최소공배수
조립제법 1 - 조립제법 하는 법
인수정리를 이용한 인수분해
[중등수학/중1 수학] - 최대공약수와 최소공배수의 관계
다항식의 약수와 배수, 최대공약수와 최소공배수
숫자에서 약수와 배수, 최대공약수와 최소공배수를 구할 수 있었죠?
다항식에서도 약수와 배수, 최대공약수와 최소공배수를 구할 수 있어요. 다항식은 인수분해를 해요. 여기서 인수가 바로 약수에 해당하는 거예요. 따라서 다항식의 약수와 배수를 구하려면 인수분해를 먼저 해야 해요.
다항식의 약수와 배수, 최대공약수와 최소공배수는 어떤 걸 말하는지 또 이들 사이에는 어떤 관계가 있는지 알아보죠.
숫자에서 식으로 바꾼 것뿐 내용은 비슷하니까 금방 이해할 수 있을 거예요.
다항식의 약수와 배수
다항식 A가 A = BC로 인수분해 될 때, A를 B, C의 배수라고 하고, B, C는 A의 약수라고 해요.
다른 다항식 D가 B를 약수로 가지면 이 다항식 D와 A 둘 다 B를 약수로 가지므로 B를 공약수라고 합니다.
서로 다른 두 다항식이 같은 배수를 가지면 이 공통된 배수를 공배수라고 부르고요. 모든 게 숫자랑 똑같아요.
숫자에서 숫자가 가장 큰 공약수를 최대공약수, 숫자가 가장 작은 공배수를 최소공배수라고 하죠? 다항식에서는 차수가 가장 큰 공약수를 최대공약수, 차수가 가장 작은 공배수를 최소공배수라고 해요. 최대공약수는 영어로 하면 Greatest Common Divisor(GCM)인데, 첫 글자를 따서 알파벳 G로, 최소공배수는 Least Common Multiple(LCM)의 첫 글자를 따서 L로 표시해요.
또 두 숫자의 공약수가 1뿐일 때를 서로소라고 하죠? 두 다항식의 공약수가 1, 2, 3, … 등 상수일 때를 서로소라고 합니다. 2(x + 1), 2(x + 2)
최대공약수, 최소공배수 구하는 방법
거듭제곱 형태로 되어 있는 수에서 최대공약수 구하는 방법은 밑이 같은 것 중에서 지수가 작은 걸 선택했어요. 다항식에서도 마찬가지예요. 여기서는 소인수가 아니라 다항식이 밑이라는 차이만 있을 뿐이죠.
A = 3(x + 1)(x + 2)(x + 3)과 B = (x + 1)(x + 2)2의 최대공약수를 구해보죠.
공통으로 들어있는 인수는 (x + 1)과 (x + 2)네요. (x + 1)은 둘 다 지수가 1이고요. A의 (x + 2)는 지수가 1, B의 (x + 2)는 지수가 2니까 더 작은 1을 선택해요. 따라서 최대공약수는 (x + 1)(x + 2)이에요.
최소공배수 구하는 방법은 일단 모든 밑을 쓰고, 밑이 겹치면 지수가 큰 걸 선택했어요. 물론 다항식에도 똑같아요.
A = 3(x + 1)(x + 2)(x + 3)과 B = (x + 1)(x + 2)2의 최소공배수를 구해보죠.
일단 인수에 해당하는 다항식을 다 써보죠. 3(x + 1)(x + 2)(x + 3) 인데, A의 (x + 2)의 지수는 1인데, B에서 (x + 2)의 지수가 2니까 지수가 큰 2를 선택해야 해요. 따라서 두 다항식의 최소공배수는 3(x + 1)(x + 2)2(x + 3)이에요.
다음 다항식들의 최대공약수와 최소공배수를 구하여라.
(1) A = ab3c, B = a2bc, C = abcd
(2) A = x3 - 3x - 2, B = 2x2 - 4x - 6
최대공약수는 공통인수 중에서 지수가 작은 것들의 곱이고, 최소공배수는 모든 인수를 다 쓰고, 공통인 경우에는 지수가 큰 걸 쓰는 거예요.
(1)번은 항이 세 개예요. 세 항 모두에 a, b, c가 들어있는데, 지수가 가장 작은 건 모두 1이에요. 따라서 최대공약수는 abc예요.
최소공배수는 일단 인수를 다 써요. 그리고 인수의 지수를 비교해야 하는데 a는 지수가 가장 큰 게 2, b는 3, c와 d는 1이네요. 최소공배수는 a2b3cd
(2)번은 인수분해가 안 돼 있죠? 인수분해를 먼저 해야 해요.
인수정리를 이용해서 인수분해를 하면
A = x3 - 3x - 2 = (x + 1)(x2 - x - 2) = (x + 1)2(x - 2)
B = 2(x - 3)(x + 1)
(x + 1)이 공통인데, A는 지수가 2, B는 지수가 1이네요. 최대공약수는 (x + 1)이고 최소공배수는 2(x - 3)(x - 2)(x + 1)2
함께 보면 좋은 글
다항식의 최대공약수와 최소공배수의 활용
인수분해, 인수분해 공식
복잡한 식의 인수분해 - 치환, 복이차식
인수정리를 이용한 인수분해
[중등수학/중1 수학] - 최대공약수와 최소공배수의 관계