네 점이 한 원 위에 있을 조건

네 점이 한 원 위에 있을 조건은 전에 한 번 공부했어요. 네 점이 한 원 위에 있을 조건에서 원주각과 대각의 합, 내대각을 이용한 조건을 공부했었죠.

이 글에서 할 건 했던 게 또 나오는 게 아니라 새로운 방법을 공부하는 거에요. 정확히 말해서 새로운 방법이라고 하는 것도 맞는 건 아니에요. 이미 배운 것이죠.

이미 배웠던 걸 네 점이 한 원 위에 있을 조건에 적용하는 것뿐이에요. 바로 원과 비례를 이용해서 네 점이 한 원 위에 있는지 알아볼 수 있어요. 그러니까 원과 비례에 대해서 알고 있어야겠죠?

네 점이 한 원 위에 있을 조건

원과 비례에서 두 가지를 공부했죠?

하나는 원의 두 현의 교점에서 각 현의 양쪽 끝점까지의 거리의 곱이 서로 같다는 것이었고요. 다른 하나는 현의 연장선(할선)의 교점에서 현의 양 끝점까지의 거리의 곱이 같다는 거였어요.

네 점이 한 원 위에 있을 조건 두 번째의 핵심은 바로 네 점이 현의 양 끝점이 되는 거예요.

네 점을 두 대각선으로 잇고 그 교점을 이용

아래 그림을 보세요.

네 점이 있는데, 대각선으로 이었더니 교점이 생겼죠? 원만 없다 뿐이지 원과 비례에서 했던 공식을 그대로 적용할 수 있어요.

왜 그럴까요? 원만 그려보면 간단히 알 수 있어요.

네 점이 원 위에 있으니까 네 점을 지나는 원을 그려보세요. 그러면 네 점은 현의 양 끝점이 되고, 교점이 있는 그림으로 바뀌었어요. 이건 원과 비례에서 봤던 그림과 완전히 같은 그림이에요.

이 유형의 문제를 풀 때는 원을 그려서 풀어야 해요. 원이 있으면 훨씬 유리하거든요.

다음 그림에서 네 점 A, B, C, D가 한 원 위에 있을 때 x를 구하여라.

네 점을 선분으로 이었을 때 교점에서 각 꼭짓점까지의 거리의 곱이 같으므로 식을 세워보면
4 × x = 3 × 7
x = (cm)

네 점을 두 선분으로 잇고 그 연장선의 교점을 이용

이번에는네 점을 두 개의 선분으로 잇고, 그 연장선의 교점이 나와 있을 때에요.

마찬가지로 네 점이 원 위에 있으니까 네 점을 지나는 원을 그려보자고요.

원과 비례 두 번째에서 봤던 그림과 똑같죠?

똑같은 그림인데, 원이 그려져 있으면 원과 비례, 원이 빠져있으면 네 점이 한 원 위에 있을 조건이에요.

다음 그림에서 네 점 A, B, C, D가 한 원 위에 있고, 의 연장선의 교점이 점 P일 때, x를 구하여라.

연장선의 교점에서 각 꼭짓점까지의 거리의 곱이 같으므로 식을 세워보면,
(9 + 3) × 3 = (5 + x) × x
36 = 5x + x2
x2 + 5x - 36 = 0
(x + 9)(x - 4) = 0
x = 4 (x > 0)

네 점이 한 원 위에 있을 조건 총정리

네 점이 한 원 위에 있을 조건을 두 가지 공부했어요. 원 위에 있는 네 점을 선으로 연결하면 사각형이 되잖아요. 따라서 사각형이 원에 내접할 조건과 같다고 할 수도 있어요. 전에 공부했던 두 가지와 이 글에서 공부한 한 가지를 한 번에 정리해보죠.

  • 네 점을 선분으로 연결하고 교점과 네 점 사이의 거리가 나와 있으면 원과 비례 이용합니다.
  • 네 점과 이웃한 두 각의 크기가 나와 있으면 네 점이 한 원 위에 있을 조건을 이용.
    두 점을 선분으로 잇고, 선분을 이루는 두 점과 나머지 한 점으로 각을 만들어서 두 각의 크기가 서로 같을 때 - 원주각 이용
  • 사각형이 그려져 있고, 대각의 크기나 외각의 크기가 나와 있으면 사각형이 원에 내접하기 위한 조건을 이용
    한 쌍의 대각의 합 = 180°
    한 외각 = 내대각

함께 보면 좋은 글

네 점이 한 원 위에 있을 조건
원에 내접하는 사각형의 성질, 내대각
사각형이 원에 내접하기 위한 조건
원과 비례, 원과 비례 증명
두 원에서 원과 비례

정리해볼까요

네 점이 한 원 위에 있을 조건

  • 네 점을 지나는 원을 그린 후, 원과 비례를 이용
 
그리드형

세 점은 무조건 같은 원 위에 있어요. 세 점을 연결해서 삼각형을 그리면 이 삼각형의 외접원을 그릴 수 있잖아요. 따라서 세 점은 바로 이 외접원 위에 있는 거죠.

사각형도 그럴까요? 사각형에서는 외접원을 그리지 못하는 경우도 있어요. 원의 외접사각형에서 사각형의 내접원을 항상 그릴 수 있는 게 아닌 것처럼요.

사각형의 외접원에 대해서는 뒤에서 더 자세히 공부할 테지만 그 전단계로 네 점이 한 원 위에 있을 수 있는 조건이 무엇인지 알아보죠. 네 점이 원 위에 있다면 그 원은 네 점을 연결해서 그린 사각형의 외접원이 될 테니까요.

네 점이 한 원 위에 있을 조건

네 점이 한 원 위에 있으려면 어떤 조건이 필요할까요?

네 점이 한 원 위에 있을 조건

두 가지 조건을 동시에 만족해야 해요.

첫 번째는 네 점 중 두 점이 다른 두 점을 연결한 직선에 대해 같은 쪽에 있어야 해요. 위 그림에서 선분 AB에 대해서 점 C와 점 D가 모두 직선보다 위에 있죠?

두 번째는 위와 같은 상태에서 직선을 이루는 두 점과 다른 두 점으로 이루어진 각의 크기가 같아야 해요. ∠ACB = ∠ADB

첫 번째 조건은 원의 일부인 호와 원주각을 만들기 위한 과정이에요.

두 번째 조건은 호AB의 원주각이 될 수 있는지를 보는 거예요. 원주각의 성질에서 원주각의 위치와 관계없이 크기가 같다고 했으니까 호AB의 원주각인 ∠ACB와 크기가 같은 다른 각이 있다면 이 각 역시 호AB의 원주각이 될 수 있는 거죠. 원주각은 원 위에 있는 각이니까 결국 점 D도 점 C와 같은 원 위에 있다는 뜻이에요.

네 점이 한 원 위에 있을 조건 2

네 점 A, B, C, D가 한 원위에 있을 조건
점 C, 점 D가 선분 AB에 대하여 같은 쪽에 있고
∠ACB = ∠ADB 일 때

다음 그림에서 네 점 A, B, C, D가 한 원 위에 있을 때 x를 구하여라.
네 점이 한 원 위에 있을 조건 예제

원래 문제에서는 원을 그려주지 않지만 네 점 A, B, C, D가 한 원 위에 있으니까 원을 그렸어요.

네 점이 원 위에 있으니까 호BC에 대하여 원주각이 두 개 있죠? 원주각의 성질에서 같은 호에 대해서 원주각의 위치와 상관없이 원주각의 크기는 같다고 했으니까 ∠BAC = ∠BDC = 45°가 됩니다.

(삼각형 외각의 크기) = (다른 두 내각의 합)이므로 오른쪽의 작은 삼각형 △CDE에서 112.5° = 45° + x°
x = 67.5°

함께 보면 좋은 글

원주각과 중심각의 크기, 원주각의 성질
원주각의 크기와 호의 길이
원의 외접사각형, 외접사각형의 성질
삼각형의 내접원, 삼각형의 둘레의 길이, 삼각형의 넓이
[중등수학/중1 수학] - 삼각형 내각의 합과 외각의 크기, 외각의 합

정리해볼까요

네 점 A, B, C, D가 한 원위에 있을 조건

  • 점 C, 점 D가 선분 AB에 대하여 같은 쪽에 있고
  • ∠ACB = ∠ADB 일 때
<<    중3 수학 목차    >>
 
그리드형

+ 최근글