나이

일차방정식의 활용 문제는 유형이 매우 다양해요. 그리고 문제 유형마다 문제를 쉽게 풀 수 있는 풀이법이 있어요. 유형별 풀이법에 대해서는 잘 이해하고 있어야 합니다.

그렇다고 공식으로 달달 외우기보다는 문제를 많이 풀어서 자연스럽게 익혀야 해요. 일차방정식의 활용 문제는 문장으로 되어 있기 때문에 식을 세우는 연습도 해야 하거든요. 실제 해보면 식을 세우는 게 제일 어렵게 느껴져요.

문제 유형별로 어떻게 식을 세워야 하는지 알아보죠. 식만 잘 세우면 푸는 건 별로 어렵지 않거든요.

일차방정식의 활용

일차방정식의 활용 문제를 풀 때는 아래의 순서대로 진행하면 됩니다.

  1. 문제에서 구하려는 것을 x라고 놓는다.
    문제를 잘 읽어보고, 문제에서 구하려는 것이 무엇인지 잘 찾아야 해요.
  2. 문제의 조건에 맞는 방정식을 세운다.
  3. 문제에서 원하는 답을 구한다.
    일차방정식의 풀이에서 공부한 방법으로 일차방정식을 풀어요.
  4. 문제에서 원하는 답을 구한다.
    방정식의 해와 문제에서 요구하는 답이 다른 경우가 있어요. 따라서 문제에서 요구하는 게 x 인지 확인하세요.

문제에서 구하라고 하는 걸 꼭 x라고 해야 하는 건 아니에요. 경우에 따라서 식을 가장 쉽게 세울 수 있는 값을 x로 놓는 경우도 있어요. 문제 유형에 맞게 잘 선택해야 해요.

어떤 수에 관한 문제

어떤 수를 구하는 문제는 아주 쉽죠. 어떤 수를 x로 놓고 식을 세워서 구하면 돼요. 방정식의 해가 바로 문제에서 구하라고 하는 어떤 수입니다.

어떤 수와 20의 합은 어떤 수를 5배 한 것보다 4가 크다고 한다. 어떤 수를 구하여라.

어떤 수를 x라고 놓고 식을 세워보죠.

x + 20 = 5x + 4
x - 5x = 4 - 20
-4x = -16
x = 4

자릿수에 관한 문제

십의 자리가 2이고, 일의 자리가 4인 수는 24라고 쓰죠. 그럼 십의 자리가 3이고, 일의 자리가 a인 수는 3a라고 쓸까요? 아니에요. 문자가 있는 경우에는 곱셈기호가 생략된 경우라서 전혀 다른 수에요.

십의 자리가 3이고, 일의 자리가 a인 수 = 3 × 10 + a

십의 자리 숫자가 a이고, 일의 자리 숫자가 5인 자연수가 있다. 이 자연수의 일의 자리 숫자와 십의 자리 숫자를 바꾸면 처음 수보다 9가 크다고 할 때, 처음 수를 구하여라.

처음 수에서 십의 자리 숫자가 a, 일의 자리 숫자가 5라고 했으므로 10 × a + 5에요.
십의 자리와 일의 자리를 바꾼 나중의 수는 10 × 5 + a가 되지요.

나중의 수가 처음 수보다 9가 크다고 했으니 처음 수에 9를 더해야 나중의 수가 되겠네요. 이걸 식으로 나타내보죠.

(10 × a + 5) + 9 = 10 × 5 + a
10a + 14 = 50 + a
10a - a = 50 - 14
9a = 36
a = 4

처음 수의 십의 자리 숫자는 4에요. 문제에서 구하려는 건 십의 자리 숫자가 아니라 처음 수에요. 그래서 십의 자리 숫자와 일의 자리 숫자를 조합한 45가 문제의 답입니다.

방정식의 해와 문제의 답이 다른 경우예요.

연속하는 자연수에 관한 문제

12와 13은 연속하는 자연수에요. 20과 21도 연속하는 자연수지요. 두 자연수 사이에는 1이라는 차이가 있어요. 연속하는 두 자연수 중 작은 수를 x라고 하면 큰 수는 (x + 1)로 쓸 수 있는 거지요. 물론 큰 걸 x, 작은 걸 x - 1로 해도 상관은 없어요.

그럼 연속하는 짝수 또는 연속하는 홀수는 어떨까요? 짝수는 2 차이가 나죠? 그래서 연속하는 두 짝수에서 작은 수를 x라고 놓으면 큰 수는 (x + 2)로 놓을 수 있어요. 홀수도 마찬가지고요.

연속하는 세 자연수는 크기가 작은 것부터 x, x + 1, x + 2로 쓸 수 있어요. 큰 것부터 쓴다면 x, x - 1, x - 2로 쓸 수 있겠죠. 하지만 실제로 식을 세워서 계산할 때는 이 둘보다 가운데 수를 x로 놓고, 작은 걸 x - 1, 큰 걸 x + 1로 놓는 게 제일 편리해요.

연속하는 두 자연수: x, x + 1
연속하는 두 짝수(홀수): x, x + 2
연속하는 세 자연수: x - 1, x , x + 1

연속하는 세 짝수의 합이 60일 때, 가장 작은 짝수를 구하여라.

연속하는 세 짝수에서 가운데 수를 x라고 놓으면 가장 작은 짝수는 x - 2, 가장 큰 짝수는 x + 2에요. 세 자연수의 합이 60이니까 이걸 식으로 세워보죠.

(x - 2) + x + (x + 2) = 60
3x = 60
x = 20

여기서 방정식의 해 20은 중간 짝수에요. 문제에서 구하는 답은 가장 작은 짝수이므로 답은 18이네요.

물론 문제에서 구하라고 한 가장 작은 짝수를 x로 놓고, 다른 짝수를 x + 2, x + 4로 해서 문제를 풀어도 좋아요.

나이에 관한 문제

나이에 관한 문제는 현재 나이와 미래 나이를 비교하는 유형이에요. 현재는 몇 살인데, 미래에는 지금보다 "몇 살 많다 혹은 몇 배이다" 이런 식이죠.

나이를 구하는 문제이긴 하지만 나이를 미지수 x로 놓으면 계산이 복잡해져요. 문제에서 요구하는 나이에 도달하는 년수를 미지수 x로 놓는 것이 쉬워요. 년수를 x로 놓은 다음에 x년 후의 나이를 x를 포함한 식으로 표현하는 거지요. 현재의 나이가 14살이라면 5년 뒤의 나이는 (14 + 5)살이잖아요. 그럼 x년 뒤의 나이는 (14 + x)로 쓸 수 있어요.

철수의 나이는 14살이고, 아빠의 나이는 46살이다. 아빠의 나이가 철수의 나이의 3배가 될 때 철수의 나이를 구하여라.

x년 후 철수의 나이는 (14 + x)살
x년 후 철수 아빠의 나이는 (46 + x)살

아빠의 나이가 철수의 나이의 3배가 되는 걸 식으로 세우면.
3(14 + x) = 46 + x
42 + 3x = 46 + x
3x - x = 46 - 42
2x = 4
x = 2

2년 뒤에 아빠의 나이가 철수의 나이의 3배가 돼요. 이때 철수의 나이는 16살이네요.

함께 보면 좋은 글

등식의 성질을 이용한 일차방정식의 풀이
일차방정식의 풀이, 일차방정식의 뜻, 이항
복잡한 일차방정식의 풀이
일차방정식의 활용 2

정리해볼까요

일차방정식의 활용

  1. 문제에서 구하려는 것을 x라고 놓는다.
  2. 문제의 조건에 맞는 방정식을 세운다.
  3. 방정식을 풀어서 해를 구한다.
  4. 문제에서 원하는 답을 구한다.
 
그리드형

연립방정식의 활용

2012. 5. 24. 12:30

이제까지 연립방정식과 그 풀이법(가감법, 대입법)에 대해서 알아봤어요. 이번 글에서는 이런 방법들을 응용해서 실제로 어떻게 문제를 푸는 지 설명할게요.

연립방정식의 활용에서 제일 중요한 것은 식을 세우는 과정이에요. 문제에서 요구하는 값을 구할 수 있는 식을 제대로 세우는 연습을 많이 해야 해요.

일차방정식의 활용 1, 일차방정식의 활용 2에서 했던 내용과 큰 차이는 없어요. 식이 연립방정식이라는 것 빼고는요. 즉, 연립방정식 방정식 2개를 만들어야 해요. 그때의 기억을 되살려보세요.

연립방정식의 활용 문제 푸는 단계

  1. 구하려고 하는 것을 x, y로
    연립방정식을 활용하는 문제에서 첫 번째 해야 할 일은 문제에서 구하는 것이 무엇인지를 파악하는 거예요. 대부분은 문제 마지막에 "…?을 구하여라."라고 나오니까 금방 찾을 수 있어요. 문제에서 구하라고 하는 것을 미지수, x, y로 놓습니다.
  2. 연립방정식 세우기
    문제에서 준 정보와 미지수를 잘 조합해서 식을 세워야 해요. 연립방정식 문제니까 식은 당연히 2개가 나오겠죠.
  3. 연립방정식 풀기
    만들어진 연립방정식을 가감법과 대입법을 이용해서 풉니다.
  4. 결과 확인
    푼 결과가 실제로 맞는지 확인하세요.

시간, 거리, 속력에 관한 문제

거리, 시간, 속력에 관한 문제는 수학에서는 빼놓지 않고 나오는 문제에요. 일차방정식은 물론 이차방정식, 부등식, 함수에서까지 모든 영역에서 나오는 문제입니다. 수학뿐 아니라 과학시간에도 배우는 내용이죠.

그래서 거리, 속력, 시간 구하는 공식을 꼭 외워야 해요.

거리, 속력, 시간 공식

왼쪽에 있는 그림을 기억하세요. 가로로 그어져 있는 선을 분수에서 사용하는 그 가로선이라고 생각하면 되겠죠.

이 유형에서 주의해야 할 건 단위에요. 단위가 시간인지 분인지 km인지 m 인지 꼭 확인해야 해요.

선영이는 집에서 학교까지 3km를 가는 동안 처음에는 시속 3km의 속력으로 걷다가 중간에 시속 5km의 속력으로 뛰어서 총 40분이 걸렸다. 선영이가 학교까지 뛰어간 거리를 구하여라.

집에서 학교까지의 거리가 3km니까 걸어간 거리를 x, 뛰어간 거리를 y라고 하면 x + y = 3이에요.

이번에는 시간을 한 번 계산해보죠. 그런데 속력은 단위가 시속이므로 시단위이고 걸린 시간은 40분으로 분단위예요. 두 시간의 단위를 맞추려면 40분을 시간으로 바꿔줘야 해요.

걸어간 시간 = , 뛰어간 시간 = , 총 걸린 시간 = 

연립방정식이 만들어졌어요.

①식에서 y = 3 - x

②식에 대입하면
5x + 3(3 - x) = 10
5x - 3x + 9 = 10
2x = 1
x = 0.5
y = 2.5

따라서 선영이가 학교까지 뛰어간 거리는 2.5km네요.

농도에 관한 문제

농도에 관한 문제 역시 빠지지 않고 나오는 문제입니다. 어쩔 수 없지만, 공식을 외워야 하고요.

농도에 관한 문제에서도 g과 kg의 단위에 주의하세요.

두 소금물 A, B를 하나로 섞었을 때

  • (A + B)의 소금의 양 = A 소금의 양 + B 소금의 양
  • (A + B) 소금물의 양 = A 소금물의 양 + B 소금물의 양
  • (A + B) 의 농도 = (A + B)의 소금의 양 / (A + B) 소금물의 양  * 100

어떤 경우에도 농도는 +/-로 구할 수 없어요. 두 소금물을 더했다고 해서 각각의 농도를 더해서 구하면 안된다는 얘기예요. 위 농도 공식에 있는 방법으로만 농도를 구해야 해요.

소금물 A을 가열했을 때

  • 가열한 후의 소금양 = 가열 전의 소금양
  • 가열한 후의 소금물의 양 = 가열 전 소금물의 양 - 증발한 물의 양

소금물 A에 물만 넣었을 때

  • 물을 넣은 후의 소금양 = 물을 넣기 전의 소금양
  • 물을 넣은 후의 소금물의 양 = 물을 넣기 전의 소금물의 양 + 넣은 물의 양

8% 소금물에 5% 소금물을 섞어서 6% 소금물 600g을 만들려고 한다. 8% 소금물과 5% 소금물의 양을 구하여라.

두 소금물을 섞어서 600g의 소금물을 만든다고 했으니까, 8% 소금물의 양을 x, 5% 소금물의 양을 y라고 하면 x + y = 600이라는 식을 하나 만들 수 있어요.

8% 소금물과 5% 소금물에 들어있는 소금의 양을 합치면 6% 소금물 600g에 들어있는 소금의 양과 같아요. 이걸 식으로 써보죠.

(8% 소금물에 들어있는 소금의 양) + (5% 소금물에 들어있는 소금의 양) = (6% 소금물에 들어있는 소금의 양)

연립방정식이 만들어졌네요.

①식에서 y = 600 - x

②식에 대입하면
8x + 5(600 - x) = 3600
3x = 600
x = 200
y = 400

8% 소금물은 200g, 5% 소금물은 400g이네요.

함께 보면 좋은 글

[중등수학/중2 수학] - 연립방정식의 활용 2
[중등수학/중2 수학] - 해가 특수한 연립방정식
[중등수학/중2 수학] - 복잡한 연립방정식의 풀이

정리해볼까요

연립방정식의 활용 문제 푸는 순서

  1. 구하려는 값을 찾아서 x, y로 놓기
  2. 연립방정식 세우기
  3. 연립방정식 풀기
  4. 결과 확인
 
그리드형

+ 최근글