분류 전체보기
곱셈공식 두 번째 - 합차공식 외
곱셈공식 두 번째예요. 곱셈공식 - 완전제곱식에서 완전제곱식의 형태인 공식을 두 개 공부했어요.
이 글에서 공부할 곱셈공식은 조금 더 어려워요. 하지만 공식이 만들어지는 원리는 분배법칙으로 모두 같아요. 만들어지는 원리를 잘 이해하고, 그림을 통해서 한 번 더 확인해보면 공식을 외우는 데 도움이 될 거예요.
공식을 외우는 이유는 계산과정을 조금 더 쉽고 빨리하기 위해서예요. 그런데 공식을 외우라고 하면 공식은 잘 외우지만, 실제 계산에서 적용하지 못하는 학생들이 있어요. 단순히 외우지만 말고 실제 문제에서 바로바로 적용할 수 있도록 연습을 많이 하세요.
곱셈공식
곱셈공식 (3) - 합차공식
세 번째 곱셈공식은 합차공식이라는 이름으로 불러요. 왜 합차공식이냐면 두 항을 더한 것과 뺀 것을 곱하거든요.
(a + b)(a - b)는 a와 b를 한 번은 더하고, 한 번은 빼서 곱하는 거죠. 전개해서 정리해볼까요?
(a + b)(a - b)
= a(a - b) + b(a - b)
= a2 - ab + ba - b2
= a2 - b2
(a + b)(a - b) = a2 - b2
앞의 항을 제곱한 것에서 뒤의 항을 제곱한 것을 빼주는 거예요.
그림으로 확인해보죠.
한 변의 길이가 a인 정사각형에서 가로는 b만큼 늘려주고, 세로는 b만큼 줄이면 가로 길이는 (a + b), 세로 길이는 (a - b)예요. 넓이는 (a + b)(a - b)죠. 이게 가운데 그림이에요.
가운데 그림의 오른쪽에 있는 작은 사각형을 밑으로 돌리면 세 번째 그림처럼 돼요. 흰 사각형의 가로 길이는 a - (a - b) = b죠.
색칠한 부분의 넓이 = 전체 사각형의 넓이 - 흰 사각형
(a + b)(a - b) = a2 - b2
합차공식은 두 개의 항을 한 번은 더하고, 한 번은 뺀 것을 곱할 때만 씁니다. (a + b)(a - c)는 +, -가 있지만 두 번째 항이 b와 c로 달라서 합차공식을 사용해서는 안 돼요.
(a + b)(a - c) ≠ a2 - b2
(b + c)(d - c) ≠ b2 - c2
다음을 간단히 하여라.
(1) (3a + b)(3a - b)
(2) (2a + 3b)(2a - 3b)
(3) (5a - 2b)(5a + 2b)
합차공식은 앞의 항을 제곱한 것에서 뒤의 항을 제곱한 것을 빼면 돼요.
(1) (3a + b)(3a - b)
= (3a)2 - b2
= 9a2 - b2
(2) (2a + 3b)(2a - 3b)
= (2a)2 - (3b)2
= 4a2 - 9b2
(3)은 두 항의 뺄셈이 앞에 있고, 덧셈이 뒤에 있죠. 곱셈에서는 교환법칙이 성립하니까 순서는 상관없어요.
(5a - 2b)(5a + 2b)
= (5a)2 - (2b)2
= 25a2 - 4b2
곱셈공식 (4) - x의 계수가 1일 때
이번 곱셈공식은 x가 있는 일차식 두 개를 곱하는 공식이에요. 이때 두 일차식의 x의 계수가 1이에요.
(x + a)(x + b)를 전개해서 정리해보죠. 여기서 a, b는 상수항이에요.
(x + a)(x + b)
= x(x + b) + a(x + b)
= x2 + bx + ax + ab
= x2 + (a + b)x + ab
세 번째 줄의 ax와 bx가 x가 있는 동류항이라서 서로 더해줬어요.
(x + a)(x + b) = x2 + (a + b)x + ab
x는 제곱해주고, 두 상수항을 더한 것에 x붙여주고, 두 상수항을 곱한 것을 더해줘요.
역시 그림으로 확인해보죠.
가로가 (x + a)이고, 세로가 (x + b)인 사각형이에요.
전체 사각형의 넓이 = 작은 사각형 네 개의 합
(x + a)(x + b) = x2 + bx + ax + ab
= x2 + (a + b)x + ab
다음을 간단히 하여라.
(1) (x + 2)(x + 3)
(2) (x + 3)(x - 5)
(3) (x - 2)(x - 3)
계수가 1인 두 일차식의 곱은 x는 제곱, 두 상수항의 합에 x를 붙여주고, 상수항의 곱을 더해주는 거예요.
(1) (x + 2)(x + 3)
= x2 + (2 + 3)x + 2 × 3
= x2 + 5x + 6
(2) (x + 3)(x - 5)
= x2 + {3 + (- 5)}x + 3 × (-5)
= x2 - 2x - 15
(3) (x - 2)(x - 3)
= x2 + {(-2) + (-3)}x + (-2) × (-3)
= x2 - 5x + 6
곱셈공식 (5) - x의 계수가 1이 아닐 때
이번 게 제일 어려운 곱셈공식이에요. 이번에도 일차식 두 개를 곱하는데 일차항의 계수가 1이 아니에요.
(ax + b)(cx + d)에서 a, c는 일차항의 계수이고, b, d는 상수항이에요.
(ax + b)(cx + d)
= ax(cx + d) + b(cx + d)
= acx2 + adx + bcx + bd
= acx2 + (ad + bc)x + bd
(ax + b)(cx + d) = acx2 + (ad + bc)x + bd
복잡하죠? 동류항이 있어서 더해주는 과정이 있어요.
그림을 보죠.
가로가 (ax + b)이고, 세로가 (cx + d)인 사각형이에요.
전체 사각형의 넓이 = 작은 사각형 네 개의 합
(ax + b)(cx + d) = acx2 + adx + bcx + bd
= acx2 + (ad + bc)x + bd
다음을 간단히 하여라.
(1) (2x + 3)(3x + 1)
(2) (3x - 1)(2x + 1)
(3) (2x - 1)(4x + 3)
(1) (2x + 3)(3x + 1)
= 2x × 3x + (2 × 1 + 3 × 3)x + 3 × 1
= 6x2 + 11x + 3
(2) (3x - 1)(2x + 1)
= 3x × 2x + {3 × 1 + (-1) × 2}x + (-1) × 1
= 6x2 + x - 1
(3) (2x - 1)(4x + 3)
= 2x × 4x + {2 × 3 + (-1) × 4}x + (-1) × 3
= 8x2 + 2x - 3
곱셈공식 - 완전제곱식에서 2개, 이 글에서 3개 해서 총 5개의 곱셈공식을 공부했어요. 무조건 외워야 합니다.
- (a + b)2 = a2 + 2ab + b2
- (a - b)2 = a2 - 2ab + b2
- (a + b)(a - b) = a2 - b2
- (x + a)(x + b) = x2 + (a + b)x + ab
- (ax + b)(cx + d) = acx2 + (ad + bc)x + bd
함께 보면 좋은 글
곱셈공식 - 완전제곱식
단항식과 다항식의 곱셈과 나눗셈
곱셈공식의 변형
곱셈공식 - 완전제곱식
단항식의 곱셈, 다항식과 단항식의 곱셈을 해봤어요. 단항식의 곱셈과 나눗셈, 단항식과 다항식의 곱셈과 나눗셈
이 글에서는 다항식과 다항식의 곱셈을 해볼 거예요. 나눗셈은 곱셈으로 바꿔서 계산하면 되니까 그냥 넘어가고요. 그리고 다항식과 다항식을 곱할 때, 계산과정을 생략하고 그 결과를 바로 만들어낼 수 있는 공식인 곱셈공식도 공부할 거예요.
앞으로 공부할 식은 기본적으로 모두 다항식이기 때문에 곱셈공식은 꼭 알아야 하는 공식이에요. 총 다섯 개가 있는데, 이 글에서는 먼저 2개를 알아보죠.
다항식 × 다항식
두 개의 다항식의 곱 (a + b)(c + d)을 해보죠. 분배법칙을 이용할 거예요.
먼저 앞에 있는 a + b를 m이라고 한 번 생각해볼까요? 그러면 식은 m(c + d)로 바꿀 수 있죠? 이 모양이라면 분배법칙으로 괄호를 풀 수 있죠?
(a + b)(c + d)
= m(c + d)
= (m × c) + (m × d)
그런데, 원래 m = a + b였잖아요. 원래 값을 대입해보죠.
= {(a + b) × c} + {(a + b) × d}
다시 분배법칙으로 괄호를 풀면
= {(a × c) + (b × c)} + {(a × d) + (b × d)}
= ac + bc + ad + bd
항이 두 개인 다항식을 곱할 때는 분배법칙을 2번 이용해서 전개하는 거죠.
위의 계산 결과가 맞는지 그림으로 증명해볼까요? 가로 길이가 (a + b)이고, 세로 길이가 (c + d)인 사각형의 넓이는 (a + b)(c + d)죠?
전체 사각형의 넓이 = 작은 사각형 네 개의 넓이의 합
(a + b)(c + d) = ac + bc + ad + bd
다항식의 곱셈을 하는 방법이에요. 앞에 있는 다항식의 항 하나를 뒤에 있는 다항식의 항에 모두 곱하고, 앞에 있는 다항식의 다른 항을 뒤에 있는 다항식의 모든 항에 곱하는 거예요. 말로 하면 어려우니까 그림으로 보고 외우세요.
다음을 간단히 하여라.
(1) (3a + 2)(a + 3)
(2) (a + 3)(a - 2)
(3) (a + 3)(2a + b - 1)
첫 번째 다항식의 한 항을 두 번째 다항식의 모든 항에 곱해주고, 첫 번째 다항식의 다른 항을 두 번째 다항식의 모든 항에 곱해주는 거예요.
(1) (3a + 2)(a + 3)
= 3a(a + 3) + 2(a + 3)
= 3a2 + 9a + 2a + 6
= 3a2 + 11a + 6
(2) (a + 3)(a - 2)
= a(a - 2) + 3(a - 2)
= a2 - 2a + 3a - 6
= a2 + a - 6
(3) 번은 두 번째 다항식의 항이 세 개인데 항의 개수만 다를 뿐 방법이 똑같아요.
(a + 3)(2a + b - 1)
= a(2a + b - 1) + 3(2a + b - 1)
= 2a2 + ab - a + 6a + 3b - 3
= 2a2 + ab + 5a + 3b - 3
곱셈공식(1) - 완전제곱식(합의 공식)
완전제곱식은 똑같은 다항식을 여러 번 곱하는 거예요. 같은 수를 곱하는 걸 거듭제곱이라고 한다면 같은 식을 곱하는 게 완전제곱식이죠.
(a + b) 라는 다항식을 2번 곱하면 (a + b)(a + b) = (a + b)2에요. 한 번 전개해보죠.
(a + b)2
= (a + b)(a + b)
= a2 + ab + ba + b2
= a2 + 2ab + b2
결과만 볼까요?
(a + b)2 = a2 + 2ab + b2
다항식의 각 항을 제곱(a2, b2)해서 더해주고, 그다음 두 항을 곱한 것의 두 배(2ab)를 더해주는 거예요.
그림으로 보면 공식을 더 쉽게 이해할 수 있어요. 한 변의 길이가 a인 정사각형의 길이를 b만큼 늘린 후 넓이를 구하는 거예요.
전체 사각형의 넓이 = 작은 사각형 네 개의 넓이의 합
(a + b)2 = a2 + ab + ba + b2
= a2 + 2ab + b2
곱셈공식(2) - 완전제곱식(차의 공식)
이번에는 (a - b) 의 완전제곱을 구해보죠.
(a - b)2
= (a - b)(a - b)
= a2 - ab - ba + b2
= a2 - 2ab + b2
결과만 볼까요?
(a - b)2 = a2 - 2ab + b2
다항식의 각 항을 제곱(a2, b2)해서 더해주고, 그다음 두 항을 곱한 것의 두 배(2ab)를 빼주는 거예요.
아래 그림을 보세요. 한 변의 길이가 a인 정사각형의 길이를 b만큼 줄인 다음에 사각형의 넓이를 구하는 과정이에요.
색칠한 사각형의 넓이 = 큰 사각형 - 흰 사각형 세 개의 넓이
(a - b)2 = a2 - b(a - b) - (a - b)b - b2
= a2 - ba + b2 - ab + b2 - b2
= a2 - 2ab + b2
두 완전제곱식의 차이를 잘 비교해서 외우세요. 각 항을 제곱해주는 건 같은데, 가운데 부호에 따라서 2ab를 더해주고, 빼주는 차이가 있어요.
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
다음을 간단히 하여라.
(1) (a + 5)2
(2) (2a + 3b)2
(3) (3a - 5)2
(4) (4a - 2b)2
완전제곱식은 각 항은 제곱해서 더해주고, 두 항의 곱에 2배 한 것을 더해주거나 빼주는 거예요.
(1) (a + 5)2
= a2 + 2 × a × 5 + 52
= a2 + 10a + 25
(2) (2a + 3b)2
= (2a)2 + 2 × 2a × 3b + (3b)2
= 4a2 + 12ab + 9b2
(3) (3a - 5)2
= (3a)2 - 2 × 3a × 5 + 52
= 9a2 - 30a + 25
(4) (4a - 2b)2
= (4a)2 - 2 × 4a × 2b + (2b)2
= 16a2 - 16ab + 4b2
함께 보면 좋은 글
곱셈공식 두 번째 - 합차공식 외
곱셈공식의 변형
지수법칙 - 곱셈, 거듭제곱
지수법칙 - 나눗셈, 괄호, 분수
단항식의 곱셈과 나눗셈
[중등수학/중1 수학] - 분배법칙, 분배법칙, 교환법칙, 결합법칙 비교
단항식과 다항식의 곱셈과 나눗셈
단항식끼리의 사칙연산, 다항식끼리의 사칙연산을 공부했어요. 이제는 다항식과 단항식의 계산을 공부할 차례에요. 이 글에서는 단항식과 다항식의 곱셈과 나눗셈에 대해서 공부합니다. 어차피 다항식의 계산은 분배법칙과 동류항 계산이라는 큰 틀 안에 있어요. 이 두 가지만 잘 잘 기억하고 있으면 돼요.
항도 많은데다가 지수 같은 건 글자도 작아서 헷갈리기도 쉬워서 제일 짜증 나는 단원이기도 해요. 하지만 복잡하다고 해서 어려운 건 아니에요. 하나씩 짚어가면서 계산하면 할 수 있어요. 몰라서 틀리는 경우보다 실수로 틀리는 게 많은 단원입니다. 연습을 많이 하셔야 해요.
단항식과 단항식의 곱셈과 나눗셈
(다항식) × (단항식)
다항식에는 항이 두 개 이상이 들어있어요. 각각의 항에 단항식을 곱해줘야 합니다. 이걸 바로 분배법칙이라고 하죠?
분배법칙을 이용하여 괄호를 풀고 정리해서 하나의 다항식으로 바꾸는 걸 전개라고 하고, 이 과정을 거쳐 생긴 새로운 다항식을 전개식이라고 해요.
전개할 때는 다항식의 항과 단항식을 곱하게 되는데, 이때 단항식의 곱셈에서 했던 것처럼 숫자는 숫자끼리, 문자는 문자끼리 곱해야 해요.
4a(2a - 3b)를 계산해보죠. 전개하려면 4a를 2a - 3b의 두 항에 모두 곱해요.
전개하는 과정에서 동류항이 있다면 동류항끼리 계산을 하면 됩니다. 위에서는 동류항이 없네요.
다항식과 단항식의 곱셈
분배법칙으로 괄호 풀기 → 단항식의 곱셈(숫자끼리, 문자끼리 곱) → 동류항 계산 → 결과(전개식)
다음을 간단히 하여라.
(1) (2a2 + 3ab) × a
(2) 2ab(3a3b + 2ab2)
(3) 4a(2a + 3b) - 2b(a + 3b)
단항식과 다항식의 곱셈에서는 분배법칙을 이용해서 괄호를 풀고, 동류항 계산해서 정리합니다.
(1) (2a2 + 3ab) × a
= 2a2 × a + 3ab × a
= 2a3 + 3a2b
(2) 2ab(3a3b + 2ab2)
= 2ab × 3a3b + 2ab × 2ab2
= 6a4b2 + 4a2b3
(3) 4a(2a + 3b) - 2b(a + 3b)
= 4a × 2a + 4a × 3b - (2b × a + 2b × 3b)
= 8a2 + 12ab - (2ab + 6b2)
= 8a2 + 12ab - 2ab - 6b2
= 8a2 + 10ab - 6b2
밑에서 두 번째 줄에 보면 동류항이 있어서 동류항 정리까지 했어요.
(다항식) ÷ (단항식)
유리수의 나눗셈은 곱셈으로 바꿔서 계산하는 게 편하죠? 다항식과 단항식도 나눗셈은 곱셈으로 고쳐서 계산합니다.
나누기를 곱하기로 바꾸고 역수를 취하면 모양이 바뀌는데, 위 곱셈에서 했던 것처럼 분배법칙을 이용해서 전개하는 거예요. 나눗셈을 계산하는 방법은 여러 가지가 있는데, 곱셈으로 바꿔서 하는 방법이 실수가 가장 적은 방법이에요.
다음을 간단히 하여라.
(1) (15ab + 5ab2) ÷ 5b
(2) (4a2b - 6ab2 + 3ab) ÷ 2ab
(3)
다항식과 단항식의 나눗셈은 곱셈으로 바꿔서 분배법칙을 이용하여 전개합니다.
함께 보면 좋은 글
단항식의 곱셈과 나눗셈
다항식의 계산, 다항식의 덧셈과 뺄셈
곱셈공식 - 완전제곱식
곱셈공식 두 번째 - 합차공식 외
[중등수학/중1 수학] - 분배법칙, 분배법칙, 교환법칙, 결합법칙 비교
다항식의 계산, 다항식의 덧셈과 뺄셈
1학년 때 다항식의 계산을 공부했어요. 특히 일차식의 덧셈과 뺄셈을 많이 연습했었죠? 이번 글에서는 다항식 중에서도 이차식의 덧셈과 뺄셈을 공부할 거예요. 그리고 문자가 한 개가 아니라 여러 개 있는 식도 계산할 거예요.
큰 틀에서 보면 1학년 때 했던 동류항의 계산과 똑같으니까 어렵게 생각할 필요는 없어요. 다만 항의 개수가 늘어나다 보니 뭔가 더 복잡해 보이고 어려워 보이는 것뿐이에요.
계산과정에서 실수가 많이 나올 수 있으니까 집중해서 보세요. 계산을 한 항에는 줄을 긋는 등의 표시를 하는 것도 괜찮은 방법이니까 사용해 보시고요.
다항식의 덧셈과 뺄셈
1학년 때의 다항식의 계산과 달라진 것이 있다면 문자의 개수와 차수가 늘어났다는 거예요. 1학년 때는 문자가 한 개였고, 차수는 1이었죠. 이제는 문자의 개수가 2개 이상이고, 차수도 2로 높아져요.
하지만 문자와 차수가 같은 동류항끼리 묶어서 계산한다는 원칙만 기억하고 있다면 크게 어렵지는 않죠.
2a + b + 3a - 2b라는 식을 볼까요? a라는 문자와 b라는 문자가 있어요. 2a와 3a가 동류항이고, b와 -2b가 동류항이죠. 따로 계산하면 돼요.
2a + b + 3a - 2b
= 2a + 3a + b - 2b
= 5a - b
괄호가 있으면 분배법칙을 이용해서 괄호를 풀고 동류항끼리 묶어서 계산해요. 또, 괄호가 여러 개 있으면 소괄호(), 중괄호{}, 대괄호[] 순으로 풀어요.
3(5a - 2b) - (3a + b)
= 15a - 6b - 3a - b
= 15a - 3a - 6b - b
= 12a - 7b
다항식의 계산: 문자와 차수가 같은 동류항끼리 계산
괄호가 있으면 분배법칙을 이용
소괄호, 중괄호, 대괄호 순으로 괄호를 푼다.
다음을 간단히 하여라.
(1) 3(a + b) - 2(a - b)
(2) 3a + 2[b + 3{a + 3b - (2b - b)} + 3a]
괄호가 있으면 소괄호, 중괄호, 대괄호 순서로 분배법칙을 이용해서 풀고 동류항끼리 계산을 해요.
(1)은 분배법칙을 이용해서 풀어야겠네요.
3(a + b) - 2(a - b)
= 3a + 3b - 2a + 2b
= 3a - 2a + 3b + 2b
= a + 5b
(2)번은 괄호가 여러 개 있어요. 소괄호부터 차례로 하나씩 풀어보죠.
3a + 2[b + 3{a + 3b - (2b - b)} + 3a]
= 3a + 2[b + 3{a + 3b - b} + 3a]
= 3a + 2[b + 3{a + 2b} + 3a]
= 3a + 2[b + 3a + 6b + 3a]
= 3a + 2[7b + 6a]
= 3a + 14b + 12a
= 15a + 14b
이차식의 덧셈과 뺄셈
일차식은 최고차항의 차수가 1인 식이에요. 그럼 이차식은 최고차항의 차수가 2인 식을 말하겠죠? 이차식은 차수가 2인 항이 하나 더 생기는 것뿐이에요.
3a2 + 5a - 1 이런 식이 이차식이죠. 이때 일차항이나 상수항이 없어도 이차식이에요. 3a2 + 5a도 이차식이고, 3a2 - 1도 이차식, 3a2만 있어도 이차식이에요. 하지만 이차항은 꼭 있어야 해요.
이차식을 계산한 후에 답을 쓸 때는 차수가 높은 수부터 내림차순으로 정리해요. 이차항, 일차항, 상수항의 순서로 쓰는 거죠. 순서가 다르다고 해서 틀린 건 아니지만, 내림차순으로 쓰기로 약속했어요.
이차식: 최고차항의 차수가 2인 다항식
동류항 계산: 이차항끼리, 일차항끼리, 상수항끼리 계산
내림차순: 이차항, 일차항, 상수항의 순서로
(2a2 + 3a + 1) + (a2 + 3)을 계산해보죠. a2라는 이차항, a의 일차항, 상수항으로 되어 있어요. 두 번째 괄호 안에는 일차항이 없지만 상관없어요.
(2a2 + 3a + 1) + (a2 + 3)
= 2a2 + a2 + 3a + 1 + 3
= 3a2 + 3a + 4
여기서도 괄호가 있다면 분배법칙을 이용해서 풀어서 동류항끼리 묶어서 계산합니다.
2(a2 + 3a + 1) - 3(a2 + a - 1)
= 2a2 + 6a + 2 - 3a2 - 3a + 3
= 2a2 - 3a2 + 6a - 3a + 2 + 3
= -a2 + 3a + 5
다음을 간단히 하여라.
(1) (2 - a - 3a2) + (4a2 + 2a - 2)
(2) 3(a2 + 3a + 3) + 4(a2 - 3a) - 2
이차식에서는 동류항이 이차항, 일차항, 상수항의 세 항이 있으니까 따로 계산하면 돼요. 그리고 답을 쓸 때는 내림차순으로 쓰고요.
(1) (2 - a - 3a2) + (4a2 + 2a - 2)
= -3a2 + 4a2 - a + 2a + 2 - 2
= a2 + a
(2) 3(a2 + 3a + 3) + 4(a2 - 3a) - 2
= 3a2 + 9a + 9 + 4a2 - 12a - 2
= 3a2 + 4a2 + 9a - 12a + 9 - 2
= 7a2 - 3a + 7
함께 보면 좋은 글
단항식의 곱셈과 나눗셈
단항식과 다항식의 곱셈과 나눗셈
지수법칙 - 곱셈, 거듭제곱
지수법칙 - 나눗셈, 괄호, 분수
[중등수학/중1 수학] - 일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈
블로그 누적 방문객 100만 돌파 기념 초대장 배부
블로그 방문객이 100만명을 돌파했습니다. ㅎㅎ
블로그를 만든 지는 꽤 오래됐어요. 2년 전에 만들었다가 글 2 ~ 3 개 올리고 방치했었는데, 지난 5월부터 다시 글을 올리기 시작해서 하루도 안빠지고 지금까지 글을 올렸어요.
8개월만에 100만명을 넘었습니다.
중학생들 공부 관련 내용이라서 시험기간이 되면 엄청 많이 들어오는데, 그 때를 제외하면 하루 10,000명 넘기기 어렵더라고요.
앞으로는 주제를 다양화해서 시즌 타는 걸 좀 줄여야겠네요.
원래는 작년에 넘을 줄 알았는데, 12월에 기말고사 끝나고 일 방문객이 1/4로 줄어들면서 며칠 늦춰졌네요.
100만명 되는 순간을 찍고 싶었는데, 새벽까지 늦게까지 기다리다가 포기했어요. 새벽에 학생들 다 자는 시간이라 접속자가 없었거든요.
100만명 돌파를 자축해봅니다.
혹시 초대장 필요하신 분 있으면 비밀글로 메일 주소 남기세요. 초대장 보내드립니다.
초대장 15장 있었는데, 다 보내드렸어요. 댓글 남기지 마세요.
단항식의 곱셈과 나눗셈
단항식과 계수라는 용어는 1학년 때 들어봤어요. 그리고 단항식의 곱셈과 나눗셈도 해봤죠? 그때는 단항식과 수의 곱셈과 나눗셈이었고, 이 글에서 할 건 단항식과 단항식의 곱셈과 나눗셈이에요.
솔직히 말해 좀 짜증 나는 과정이라고 할 수 있어요. 같은 문자에 비슷비슷한 차수의 계산이 많이 나오거든요. 원리가 어렵다기보다는 계산이 복잡하죠. 문자와 차수를 잘 구별하고, 빼먹는 항이 없도록 집중해야하는 단원입니다.
실수를 줄이려면 계산 연습을 많이 해보는 방법밖에 없어요. 교과서의 예제를 많이 풀어보세요.
단항식의 곱셈과 나눗셈
단항식의 덧셈과 뺄셈은 동류항의 덧셈과 뺄셈에 나온 것처럼 차수와 문자가 같은 동류항끼리 계산해요. 1학년 때 해봤으니까 넘어가죠.
단항식의 곱셈
2a3b × 3ab2을 계산해보죠. 생략된 곱셈기호를 다시 살려서 계산하면 돼요.
2a3b × 3ab2
= (2 × a3 × b) × (3 × a × b2)
= 2 × 3 × a3 × a × b × b2 (∵ 교환법칙)
= 6 × a4 × b3
= 6a4b3
매번 이렇게 풀어서 계산할 수는 없잖아요. 규칙을 알아보죠.
단항식의 덧셈, 뺄셈에서 숫자끼리 더하거나 빼고 문자는 뒤에 그대로 붙여준다고 했어요. 단항식의 곱셈에서도 숫자끼리 곱해요. 다만 문자는 바뀌죠? 문자는 어떻게 하냐면 지수법칙을 이용해서 밑이 같은 문자끼리 곱하는 거예요.
단항식의 곱셈: 숫자는 숫자끼리, 문자는 밑이 같은 문자끼리 곱
다음을 간단히 하여라.
(1) 3a2b3 × 4a3b3
(2) (2a)3 × 4a × 5a2
(3) (5a2b)2 × (2a2b3)3
단항식의 곱셈은 숫자끼리, 문자끼리 곱하는 거예요.
(1) 3a2b3 × 4a3b3
= (3 × 4) (a2 × a3) (b3 × b3)
= 12a5b6
두 번째 줄에서 숫자끼리, 밑이 같은 문자끼리 묶어서 계산했어요.
(2)에는 거듭제곱의 거듭제곱 꼴이므로 지수법칙 - 괄호를 이용해서 먼저 계산해야 해요. 괄호 안의 모든 항목을 거듭제곱해주는 거예요.
(2a)3 × 4a × 5a2
= 23a3 × × 4a × 5a2
= (8 × 4 × 5) (a3 × a × a2)
= 160a6
(3)도 지수법칙을 이용해서 괄호를 먼저 전개한 다음에 곱셈을 해야 합니다.
(5a2b)2 × (2a2b3)3
= 52(a2)2b2 × 23(a2)3(b3)3
= 25a4b2 × 8a6b9
= (25 × 8) (a4 × a6) (b2 × b9)
= 200a10b11
단항식의 나눗셈
나눗셈에서도 곱셈처럼 숫자끼리, 밑이 같은 문자끼리 계산해요. 나눗셈은 분수를 이용하기 때문에 약분을 하는데, 이때는 밑이 같은 문자에서 지수를 빼는 거예요. 계산은 분수를 이용하는 방법과 역수를 이용하는 방법으로 합니다.
나눗셈을 분수로 바꿔서 계산하는 방법이에요. 나누는 수를 분수의 분모로 하는 방법이죠.
이번에는 역수를 이용하는 방법을 해보죠. 나누는 수에 분수가 있을 때 유용한 방법이에요.
위 경우처럼 나누는 항의 계수만 분수이고 문자는 분수가 아닐 때, 계수만 역수로 바꾸고 문자는 그대로 두는 경우가 있어요. 이 아니라 3a2b로 말이죠. 실수를 정말 자주 하는 거니까 꼭 주의하세요. 역수로 바꿀 때는 숫자와 문자 모두 다 뒤집어야 해요.
분수꼴로 고쳐서
나누기를 곱하기로 바꾸고 역수
다음을 간단히 하여라.
단항식의 나눗셈도 숫자는 숫자끼리, 문자는 문자끼리 계산해요. 대신 나누는 수가 분수면 역수를 이용하고, 분수가 아니면 분모로 만들어서 계산하지요.
(1)에서는 나누는 수가 분수가 아니므로 식 전체를 분수꼴로 바꿔서 계산하면 편해요
(2)번에는 괄호가 있으므로 괄호의 거듭제곱을 지수법칙을 이용해서 푼 다음에 나눗셈해야겠네요. 그리고 나누는 수에 분수가 있으니까 역수를 이용해서 계산하고요.
(3)번은 곱셈과 나눗셈이 섞여 있는 계산이네요. 앞에서부터 순서대로 계산하면 돼요.
함께 보면 좋은 글
지수법칙 - 곱셈, 거듭제곱
지수법칙 - 나눗셈, 괄호, 분수
다항식의 계산, 다항식의 덧셈과 뺄셈
단항식과 다항식의 곱셈과 나눗셈
[중등수학/중1 수학] - 단항식의 곱셈과 나눗셈, 일차식의 곱셈과 나눗셈
[중등수학/중1 수학] - 일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈
지수법칙 - 나눗셈, 괄호, 분수
지수법칙 두 가지를 공부했었죠? 밑이 같은 거듭제곱의 곱일 때는 밑을 그대로 써주고 지수는 더해주는 거였고요. 거듭제곱의 거듭제곱에서는 밑은 그대로 쓰고, 지수를 곱해주는 거였어요.
지수법칙 두 번째는 나눗셈과 괄호가 있을 때의 거듭제곱이에요.
나눗셈에서는 지수의 크기가 중요해요. 지수의 크기에 따라 계산 방법이 달라지거든요. 괄호가 있을 때는 분수든 아니든 상관없이 공통된 특징이 있으니 이건 쉽게 이해할 거예요.
지수법칙
25 ÷ 23을 해볼까요? 지수를 풀어서 계산(약분)한 다음, 다시 거듭제곱으로 나타내보죠.
지수만 보면 5 - 3 = 2가 되죠. 밑이 같은 거듭제곱의 나눗셈은 밑은 그대로 쓰고, 지수만 빼면 돼요. 여기까지는 지수법칙 첫 번째에서 했던 밑이 같은 거듭제곱의 곱과 비슷해요. 밑이 다르거나 나눗셈이 아니면 쓸 수 없다는 것까지 같지요.
이번에는 25 ÷ 25을 해보죠.
위처럼 밑은 그대로 쓰고, 지수의 차를 구해보면 25 ÷ 25 = 25 - 5 = 20이 되겠지요? 여기에서 20 = 1이라는 걸 알 수 있어요. 지수가 같으면 나누기의 결과로 지수는 0이 되고, 밑이 2든 3이든 상관없이 모든 수의 0 제곱은 1이에요.
이번에는 23 ÷ 25를 해볼까요?
밑이 같고 지수의 나눗셈이니까 밑은 그대로 쓰고, 지수끼리 빼면 23 ÷ 25 = 23 - 5 = 2-2이 돼요. 지수가 -2인데, (-)는 분수라는 걸 말해요. 지수가 2인 분수꼴이라는 뜻이죠. 나누는 수의 지수가 클 때는 분수로 쓰되, 지수는 큰 것에서 작은 걸 빼주는 거지요.
위 세 경우에서 보듯이 거듭제곱의 나눗셈은 나누어지는 수와 나누는 수의 지수 크기에 따라 계산 방법이 살짝 달라져요.
a ≠ 0이고, m, n이 자연수일 때
다음을 간단히 하여라.
(1) a6 ÷ a2
(2) b5 ÷ b3 ÷ b2
(3) c3 ÷ c7
밑이 같은 거듭제곱의 나눗셈에서는 나누어지는 수와 나누는 수의 지수 중 어디가 큰지에 따라 달라져요. 나누어지는 수의 지수가 크면 밑은 그대로 쓰고 지수의 차, 같으면 1, 나누어지는 수의 지수가 더 작으면 분수 형태예요.
(1) 나누어지는 수의 지수가 나누는 수의 지수보다 크네요.
a6 ÷ a2
= a6 - 2
= a4
(2)에서는 항이 3개지만 밑이 같으면 한꺼번에 계산할 수 있어요.
b5 ÷ b3 ÷ b2
= b5 - 3 - 2
= b0
= 1
(3)은 나눠지는 수의 지수가 더 작으니까 분수로 나오겠지요.
괄호가 있을 때 지수법칙
이번에는 여러 개의 문자나 수를 한꺼번에 거듭제곱할 때 어떻게 되는지 알아보죠.
(ab)3을 볼까요? ab를 3번 곱한 건데, 원래 a × b에서 곱셈기호가 생략된 거죠.
(ab)3
= (a × b)3 곱셈기호 살리기
= (a × b) × (a × b) × (a × b)
= (a × a × a) × (b × b ×b ) 곱셈에 대한 교환법칙
= a3 × b3
= a3b3 곱셈기호 생략
첫 줄과 끝줄만 보면, (ab)3 = a3b3로 괄호 안에 있는 것들을 각각 세제곱한 것과 같아요.
분수의 거듭제곱도 분자, 분모를 각각 거듭제곱한 것과 같죠.
위 두 가지를 정리해 보면, 괄호로 묶여있는 걸 거듭제곱하면 괄호 안에 있는 것들을 각각 거듭제곱한 것과 같다는 걸 알 수 있어요.
b ≠ 0이고, m이 자연수일 때
다음을 간단히 하여라.
괄호 안에 있는 건 분수든 아니든 상관없이 각각을 거듭제곱해줘야 해요.
(1) (a3b2)2
= (a3)2(b2)2
= a3 × 2b2 × 2
= a6b4
(2)에서 (-a) = (-1) × a에요.
(-a)4 × (-b)3
= (-1)4a4 × (-1)3b3
= a4 × (-b3)
= -a4b3
함께 보면 좋은 글
지수법칙 - 곱셈, 거듭제곱
단항식의 곱셈과 나눗셈
다항식의 계산, 다항식의 덧셈과 뺄셈
단항식과 다항식의 곱셈과 나눗셈
곱셈공식 - 완전제곱식
곱셈공식 두 번째 - 합차공식 외
지수법칙 - 곱셈, 거듭제곱
1학년 때 거듭제곱의 뜻, 거듭제곱으로 나타내기를 공부했었죠? 내용이 기억나나요? 똑같은 수를 여러 번 곱할 때, 거듭제곱을 이용해서 나타낸다고 했지요? 거듭제곱에서 곱해지는 수를 보통 크기로 쓰고, 곱하는 횟수는 오른쪽 위에 작게 쓰기로 했어요. 이때, 아래에 있는 걸 밑, 오른쪽 위에 작게 쓰여진 걸 지수라고 했지요.
지수법칙에서 지수는 바로 거듭제곱에서의 지수를 말해요.
지수법칙은 거듭제곱에서 지수를 계산하는 법칙인데, 얼마나 중요하면 이름이 공식도 아니고 법칙이겠어요. 꼭 외워야겠죠?
지수법칙
지수법칙 1 - 거듭제곱의 곱
23 × 25을 계산해볼까요? 거듭제곱으로 쓰여있는 걸 곱하기로 풀어서 계산한 다음 다시 거듭제곱으로 써 보죠.
23 × 25
= (2 × 2 × 2) × (2 × 2 × 2 × 2 × 2)
= 28
가운데 지수를 풀어쓴 부분을 제외하면 23 × 25 = 28이 돼요. 지수만 보죠. 두 지수 3과 5를 더하면 8이죠? 이게 지수법칙의 첫 번째 입니다. 밑이 같은 두 거듭제곱의 곱은 밑은 그대로 쓰고 지수만 서로 더해주는 거죠.
위 지수법칙이 성립하려면 조건이 있어요. 밑이 같아야 하고, 두 거듭제곱이 곱셈이어야 해요. 밑이 다르거나 곱셈이 아니면 성립하지 않아요.
밑은 같지만, 곱셈이 아니라 덧셈인 경우를 보죠.
23 + 25
= (2 × 2 × 2) + (2 × 2 × 2 × 2 × 2)
= 8 + 32
= 40
= 23 × 5
28 = 256 ≠ 23 + 25에요.
곱셈이지만 밑이 다르면 어떻게 되는지 볼까요?
23 × 32
= (2 × 2 × 2) × (3 × 3)
= 8 × 9
= 72
23 × 32에서 지수는 더하라고 했으니까 3 + 2 = 5이고, 밑은 그대로인데, 2와 3 두 개 중 어떤 걸 쓸까 고민하다가 2 × 3 = 6이니까 6으로 해서 65으로 쓰는 경우가 많이 있어요. 이렇게 하면 절대로 안 돼요.
다시 정리할게요. 첫 번째 지수법칙이 성립하려면 밑이 같고, 거듭제곱의 곱셈이어야 해요.
다음을 간단히 하여라.
(1) (-1)2 × (-1)3
(2) a2 × a3 × a4
(3) a3 × b2 × a5 × b4
밑이 같은 거듭제곱의 곱셈은 밑은 그대로 쓰고, 지수만 더해주는 거예요.
(1) (-1)2 × (-1)3 = (-1)2 + 3 = (-1)5 = -1
(2)는 항이 세 개인데, 세 개 다 밑이 같고 곱셈이므로 지수법칙을 한꺼번에 적용할 수 있어요.
a2 × a3 × a4 = a2 + 3 + 4 = a9
(3)은 밑이 a와 b가 섞여 있죠? a, b를 따로 계산해야 해요.
a3 × b2 × a5 × b4
= a3 × a5 × b2 × b4
= a3 + 5 × b2 + 4
= a8 × b6
= a8b6
밑이 다르므로 더 이상 계산할 수 없고, 곱셈기호만 생략할 수 있어요.
지수법칙 두 번째 - 거듭제곱의 거듭제곱
지수법칙 두 번째는 거듭제곱의 거듭제곱이에요.
(23)2를 해보죠. 23을 통째로 하나의 문자라고 생각해보세요. (23)2는 23를 두 번 곱하는 거죠?
(23)2
= (23) × (23)
= (2 × 2 × 2) × (2 × 2 × 2)
= 26
처음하고 끝줄만 볼까요? (23)2 = 26에서 지수 2와 지수 3을 곱하면 6이 되죠?
바로 지수법칙 두 번째에요. 거듭제곱의 거듭제곱은 밑은 그대로 쓰고 지수만 서로 곱해주는 거예요.
여기는 별다른 조건이 없어요. 그냥 계산하면 돼요.
곱셈에서는 교환법칙이 성립하죠? 그래서 지수 m, n의 자리를 바꿔서 계산한 (am)n = amn = anm = (an)m가 성립해요.
다음을 간단히 하여라.
(1) (x3)4
(2) (a2)3 × (a3)3
(3) (a2)3 × (b3)2
거듭제곱의 거듭제곱에서는 밑을 그대로 쓰고, 지수를 곱해줘요.
(1) (x3)4 = x3 × 4 = x12
(2)는 (거듭제곱의 거듭제곱) 두 개가 곱해져 있어요. 지수법칙 첫 번째와 두 번째가 섞여있는 거죠. 두 번째 지수법칙을 먼저 적용한 다음 첫 번째 지수법칙을 이용해서 계산해야 합니다.
(a2)3 × (a3)3
= (a2 × 3) × (a3 × 3)
= a6 × a9
= a6 + 9
= a15
(3)도 같은 건데, 밑이 a와 b로 달라요. 주의하세요.
(a2)3 × (b3)2
= (a2 × 3) × (b3 × 2)
= a6 × b6
= a6b6
함께 보면 좋은 글
지수법칙 - 나눗셈, 괄호, 분수
[중등수학/중1 수학] - 거듭제곱의 뜻, 거듭제곱으로 나타내기, 제곱, 세제곱
[중등수학/중1 수학] - 곱셈기호의 생략, 나눗셈 기호의 생략
[중등수학/중1 수학] - 교환법칙
근삿값의 표현
근삿값을 표현하는 방법에 대해서 공부해볼꺼에요. 근삿값을 표현하는 방법을 많이 연습해봐야하고, 또 근삿값으로 표현된 수에서 그 의미를 찾는 방법도 연습을 많이 해야합니다.
근삿값과 유효숫자는 아주 밀접한 관계가 있으니까 유효숫자의 판별법을 모르면 안돼요.
근삿값 단원이 어려운 게 뭐냐면 앞에서 공부한 참값, 근삿값, 오차, 오차의 한계, 참값의 범위, 유효숫자, 이 글에서 배울 근삿값의 표현이 모두 섞여서 한 문제로 나와요. 어느 하나라도 잘 모르면 풀기가 어렵겠지요. 각 용어들의 연관성과 구하는 방법에 대해서 잘 이해하고 있어야 해요.
근삿값의 표현
근삿값을 표현할 때는 유효숫자를 소수로 바꾸고, 거기에 거듭제곱을 곱하는 형태로 표현합니다.
제일 먼저 유효숫자를 찾아야 겠죠.
유효숫자를 소수로 바꿀때는 규칙이 있어요. 첫번째 유효숫자만 소수점 앞에 쓰고, 나머지 유효숫자는 모두 소수점 뒤에 적어요. 일의 자리와 소수점 이하 자리의 숫자로만 표시하는 거죠. 어떤 경우에도 가장 앞에 있는 유효숫자가 0이 되는 경우는 없어요. 최소한 1이죠. 따라서 소수로 표현된 수는 1보다 크거나 같지요. 또 십의 자리 숫자는 없으므로 10보다는 작을 거고요.
그런데, 유효숫자로 만든 소수는 원래의 근삿값과 다르죠. 두 값을 같게 해주기위해서 10의 거듭제곱을 뒤에 곱해줘요.
1234라는 근삿값을 표현해보죠.
- 유효숫자를 찾아요.
1, 2, 3, 4의 네 개가 유효숫자에요. - 가장 앞에 있는 유효숫자만 소수점 앞에 쓰고, 나머지는 모두 소수점 뒤에 써요.
1.234 - 1.234 ≠ 1234이므로 10의 거듭제곱을 곱해줘서 두 수를 같게 만들어 줍니다.
1234 = 1.234 × 103
0.00506를 해보죠. 과정은 같아요.
- 유효숫자를 찾아요.
5, 0, 6의 세 개가 유효숫자에요. - 가장 앞에 있는 유효숫자만 소수점 앞에 쓰고, 나머지는 모두 소수점 뒤에 써요.
5.06 - 5.06 ≠ 0.00506이므로 10의 거듭제곱을 곱해줘서 두 수를 같게 만들어 줍니다.
0.00506 = 5.06 ×
10의 거듭제곱에서 지수를 찾는 건 소수점을 몇 칸 이동하느냐로 찾아요. 원래 수에서 왼쪽으로 소수점을 세 칸 옮기면 103, 원래 수에서 오른쪽으로 세 칸 옮기면 을 곱해주는 거죠.
근삿값 36800을 일의 자리에서 반올림해서 얻었다. 유효숫자와 10의 거듭제곱을 이용해서 나타내어라.
일의 자리에서 반올림했으니까 십의 자리가 반올림받은 자리에요. 반올림받은 자리까지가 유효숫자죠. 따라서 유효숫자는 3, 6, 8, 0이에요.
가장 앞의 유효숫자만 소수점 앞에 쓰고 나머지는 소수점 뒤에 쓰니까 3.680이에요. 3.680은 36800과 다르므로 10의 거듭제곱을 곱해줘야하는데, 소숫점을 원래 수에서 왼쪽으로 네 번 옮겼으므로 104을 곱해줘야 합니다.
36800 = 3.680 × 104
자를 이용해서 어떤 자동차의 길이를 재었더니 3.05 × 102cm였다. 다음 물음에 답하여라.
(1) 유효숫자를 모두 구하여라.
(2) 길이를 재는데 사용한 자의 최소 눈금 단위는 얼마인가?
(3) 오차의 한계를 구하여라.
(4) 자동차 길이의 참값의 범위를 구하여라.
(1) 근삿값은 유효숫자와 10의 거듭제곱의 곱으로 표시해요. 따라서 앞에 있는 소수 부분의 숫자가 모두 유효숫자지요. 3, 0, 5가 유효숫자에요.
(2) 측정값에서 유효숫자는 앞에서부터 최소 눈금 단위까지에요. 이걸 거꾸로 생각해보면 유효숫자의 마지막 숫자가 있는 단위가 최소 눈금 단위죠. 3.05 × 102 = 305cm 에서 마지막 유효숫자가 5이므로 5가 나타내는 단위인 1cm가 최소 눈금 단위에요.
(3) 오차의 한계는 최소 눈금 단위의 절반이에요. 1cm × ½ = 0.5cm
(4) 근삿값 - 오차의 한계 ≤ 참값의 범위 < 근삿값 + 오차의 한계 이므로 대입하면
(305 - 0.5)cm ≤ 자동차의 진짜 길이 < (305 + 0.5)cm
304.5cm ≤ 자동차의 진짜 길이 < 305.5cm
유효숫자, 유효숫자 판별
유효숫자라는 걸 공부할 거예요. 유효숫자가 무엇인지 또 어떤 숫자들이 유효숫자인지도요. 특히 0은 유효숫자인지 아닌 지 알아보기가 까다롭기 때문에 이 부분도 살펴볼 겁니다.
유효숫자는 오차의 한계와 구하는 방법이 비슷하기때문에 둘을 함께 비교하면서 공부하면 좋아요. 그래야 외우기도 쉽고, 헷갈리지 않아요.
유효숫자는 다음에 공부할 근삿값의 표현에서 꼭 필요하기때문에 정확히 알아야 해요.
유효숫자
유효숫자는 믿을 수 있는 숫자에요. 근삿값을 사용하다보면 오차가 생기기때문에 근삿값의 모든 숫자가 다 정확한 건 아니에요. 하지만 오차를 고려하더라도 몇 개는 신뢰할 만한 숫자가 있는데, 그게 바로 유효숫자에요
일반적으로 백화점에서 49,800원짜리 옷을 하나 산 후에 누군가 옷의 가격을 물어보면 "50,000원에 샀어"라고 얘기합니다. 실제는 49,800원인데 50,000원 줬다고 얘기하면 둘 사이에 200원이라는 오차가 생기죠. 오차는 200원이니까 100원 단위를 틀리게 말할 수 있지만, 만원 단위, 천원 단위까지 틀리게 말하는 건 아니잖아요. 이 경우에는 만원 단위인 5와 천원 단위인 0의 두 숫자는 믿을 수 있는 숫자로 유효숫자에요.
유효숫자는 이름 그대로 숫자로 표현합니다. 단위는 무시해요. 위 경우에서 유효숫자는 5만과 0천이 아니라 5, 0입니다.
유효숫자를 구하는 방법
어떤 숫자를 일의 자리에서 반올림한다고 해보죠. 일의 자리에서 반올림을 하면 일의 자리 숫자는 그냥 그대로 버리고 0으로 쓰죠. 따라서 일의 자리 숫자 0은 원래의 의미가 없어져버려서 믿을 수 없는 숫자가 되버려요.
십의 자리 숫자는 그대로 이거나 +1이 되고, 그 외의 숫자는 그대로죠. 이런 숫자들은 조금씩 바꿀 수는 있겠지만 그 의미까지 완전히 없어졌다고 보기는 힘들겠죠? 따라서 이런 숫자들은 믿을 수 있는 유효숫자로 할 수 있어요.
십의 자리에서 반올림한다면 십의 자리 숫자와 일의 자리 숫자는 그냥 버려서 0이 되니까 의미가 없어지고, 백의 자리 숫자와 그 이의의 숫자는 모양은 바뀔 수 있지만 신뢰할 수 있는 유효숫자에요.
반올림을 할 때는 반올림을 받은 자리까지의 숫자가 유효숫자에요.
어떤 도구를 이용해서 측정한 값도 근삿값이므로 오차가 생기고, 거기에도 유효숫자라는 게 있어요.
측정값에서의 유효숫자는 최소 눈금 단위의 숫자까지 입니다. 최소눈금 단위 아래의 숫자는 그냥 버리잖아요. 1cm눈금이 있는 자로 물건을 잴 때는 9cm, 10cm 이렇게 재지, 9.6cm, 10.3cm 이렇게 하지 않잖아요.
유효숫자는 오차의 한계와 관련성을 이용해서 외우는 게 좋아요.
| 오차의 한계 | 유효숫자 | |
|---|---|---|
| 반올림한 경우 | 반올림 받은 자리의 절반 | 반올림 받은 자리까지 |
| 측정한 경우 | 최소 눈금 단위의 절반 | 최소 눈금 단위까지 |
일의 자리에서 반올림해서 얻은 1110이라는 근삿값에서 유효숫자를 찾아볼까요? 일의 자리에서 반올림했으니까 십의 자리가 반올림을 받은 자리고, 앞에서부터 십의 자리까지의 모든 숫자가 유효숫자에요. 1, 1, 1 이죠. 여기서 1이 세 개라고 해서 1을 하나만 쓰면 안돼요. 중복되는 숫자가 있더라도 모두 써주야 합니다. 유효숫자는 1 하나가 아니라 1, 1, 1 이렇게 세 개입니다.
다음에서 유효숫자를 구하여라.
(1) 십의 자리에서 반올림하여 얻은 12000
(2) 백의 자리에서 반올림하여 얻은 12000
(3) 최소 눈금 단위가 1cm인 자로 잰 100cm
(4) 최소 눈금 단위가 10cm인 자로 잰 100cm
유효숫자는 반올림 받은 자리까지 그리고 최소 눈금 단위까지의 숫자가 모두 유효숫자에요. 그 아래의 숫자는 유효숫자가 아니죠.
(1) 십의 자리에서 반올림했으므로 반올림받은 자리는 백의 자리에요. 앞에서부터 백의자리까지가 유효숫자입니다. 만의 자리인 1, 천의 자리인 2, 백의 자리인 0 세 숫자가 유효숫자에요. 답은 1, 2, 0네요. 1 2 0 0 0
(2) 백의 자리에서 반올림했으므로 반올림받은 자리는 천의 자리에요. 앞에서부터 천의자리까지가 유효숫자입니다. 만의 자리 1, 천의 자리 2이 유효숫자에요. 답은 1, 2입니다. 1 2 0 0 0
(3) 최소 눈금 단위가 1cm이므로 앞에서부터 1cm 단위까지가 유효숫자에요. 백의 자리 1, 십의 자리 0, 일의 자리 0 세 수가 모두 유효숫자에요. 1, 0, 0이 답이네요. 1 0 0
(4) 최소 눈금 단위가 10cm이므로 앞에서부터 10cm 단위까지만 유효숫자이고, 그 아래 숫자는 유효숫자가 아니에요. 백의 자리 1, 십의 자리 0은 유효숫자고, 마지막 일의 자리 0은 유효숫자가 아닙니다. 1, 0이 답이에요. 1 0 0
유효숫자 판별
근삿값을 구한 다음에 유효숫자를 판별하는 방법은 위 과정으로 하면 됩니다.
그런데, 어떤 방법으로 유효숫자를 구했는지 모른 체 그냥 근삿값만 알려준 경우에는 유효숫자를 구하기가 까다롭죠. 특히 다른 숫자들은 괜찮은데 0이 문제에요.
어느 자리에서 반올림 했는 지는 모르는 근삿값 1200이라는 숫자가 있다고 해보죠. 여기서 십의 자리 0을 보세요. 원래 숫자가 0이었는지, 원래는 9였는데 일의 자리에서 반올림을 받아서 0이 된 거지, 십의 자리에서 반올림을 하고 버려서 0이 되었는 지 알 수가 없지요.
이럴 때 십의 자리 0이 유효숫자인지 아닌 지 알아볼 수 있는 방법이 있어야겠죠?
- 유효숫자
0이 아닌 모든 숫자
0이 아닌 숫자 사이에 있는 0 - 2013, 1.05
소수에서 뒤에 있는 0 - 1.40 - 유효숫자 인지 아닌 지 알 수 없는 경우
정수의 끝에 있는 0 - 30, 100 - 유효숫자가 아닌 경우
소수에서 자릿수를 표시하는 0 - 0.002
다음 중 유효숫자의 개수가 다른 것을 고르시오.
(1) 1301 (2) 1031 (3) 1.010 (4) 0.101
0이 아닌 모든 숫자는 유효숫자에요. 0이 아닌 숫자 사이에 있는 0도 유효숫자고, 소수의 마지막에 있는 0도 유효숫자에요. 소수에서 자릿수를 표시하기 위해 사용하는 0은 유효숫자가 아니에요.
(1) 1301은 0이 아닌 숫자 1, 3, 1은 유효숫자에요. 또 3과 1 사이에 있는 0도 유효숫자고요. 유효숫자는 4개네요.
(2) 1031은 0이 아닌 숫자 1, 3, 1은 유효숫자에요. 또 1과 3 사이에 있는 0도 유효숫자고요. 유효숫자는 4개입니다.
(3) 1.010은 0이 아닌 숫자 1이 두 개 있어요. 또 1과 1 사이의 0도 유효숫자고, 소수의 마지막에 있는 0도 유효숫자에요. 따라서 유효숫자는 4개에요.
(4) 0.101에서 0이 아닌 숫자 1이 두 개 있고요. 1과 1 사이의 0도 유효숫자에요. 하지만 소수점 앞에 있는 0은 소수라는 걸 알려주기 위한 0이므로 유효숫자가 아니에요. 유효숫자는 3개입니다.
따라서 답은 유효숫자가 3개인 (4)번이 되겠네요.
함께 보면 좋은 글
참값, 근삿값, 오차, 오차의 한계, 참값의 범위
근삿값의 표현
참값, 근삿값, 오차, 오차의 한계, 참값의 범위
새로운 용어가 나오는데, 그 차이가 애매해서 뭔지 잘 모를 수 있어요. 작은 차이를 잘 이해해야 합니다.
개념을 이해하기 어려워서 그렇지 실제 계산하는 건 어렵지 않아요. 반대로 개념을 못 잡으면 쉬운 계산도 할 수 없어요.
양이 별로 많지 않으니 굳이 나눠서 하기보다는 글 하나에 모두 담겠습니다. 차이를 서로 비교하는 데 조금 더 도움이 될 거예요.
오차의 한계와 참값의 범위는 서로 연관성이 높으니까 잘 보세요.
참값, 근삿값, 오차
측정값은 자나 저울 등의 기구로 측정해서 얻은 값이에요. 길이나 무게, 부피 등이 있겠지요. 근삿값은 참값은 아니지만, 참값에 가까운 값이에요. 측정값은 모두 근삿값이에요.
측정값이라 하더라도 문제에서 참값이라고 하면 그건 참값이에요. 예를 들어 "참값이 1.25m인 책상의 길이를 다시 재봤더니 1.30m가 나왔다"는 문제에서 1.25m라는 값도 실제로는 길이를 재봤으니까 알 수 있는 값으로 측정값이에요. 하지만 문제에서 참값이라고 했으니까 참값이라고 생각해야 합니다. 1.25m는 참값, 1.30m는 측정값이죠.
오차는 참값과 근삿값의 차이인데, 근삿값에서 참값을 빼서 구합니다. 빼는 순서가 중요하니까 주의하세요. 오차는 양수일 수도 있고, 음수일 수도 있어요.
오차 = 근삿값 - 참값
다음을 참값과 근삿값으로 나누어라.
(1) 3반의 학생 수는 30명이다.
(2) 수정이의 키는 163cm이다.
(3) 집에서 학교까지의 거리가 1.3km다.
(4) 빅토리아가 반장 선거에서 얻은 표는 25표이다.
(5) 어제 비가 15mm 내렸다.
(6) 엠버는 2학년 5반이다.
사람 수, 개수 등은 참값이고 자나 저울 등으로 재서 얻은 측정값은 근삿값이에요.
(1), (4), (6) 번은 개수와 번호로 참값이고, (2), (3), (5)는 길이, 거리, 부피로 기구를 이용해서 측정한 근삿값입니다.
무게가 230g인 연필을 진리와 선영이가 저울을 이용하여 무게를 쟀더니 진리는 235g, 선영이는 220g이 나왔다. 두 사람이 측정한 값의 오차를 구하여라.
먼저 문제에서 "무게가 230g"이라고 했는데, 이 230g은 저울을 이용해서 얻은 측정값이라고 생각할 수 있어요. 하지만 문제에서 주어진 만큼 참값이라고 생각해야 합니다.
오차 = 근삿값 - 참값이므로 여기에 넣어서 오차를 구해보죠.
진리의 오차 = 235 - 230 = 5(g)
선영이의 오차 = 220 - 230 = -10(g)
오차의 한계
어떤 수를 일의 자리에서 반올림해서 130이라는 값을 얻었다고 해보죠. 그렇다면 어떤 수 x는 125 ≤ x < 135에요. 130은 반올림해서 얻은 값이므로 근삿값이고, 125와 135 사이의 어떤 수가 참값이지요.
오차를 구해보면 130 - 125 = 5일 때 가장 크고, 130 - 135 = -5일 때 가장 작아요. -5 < 오차 ≤ 5
오차의 한계는 오차가 가장 클 때의 절댓값을 말해요. 위 경우에서는 5가 되겠죠.
오차는 오차의 한계 내에서 생길 수 있어요. 오차의 한계를 넘어가는 오차는 없는 거죠.
1cm 단위만 표시된 자를 이용해서 연필의 길이를 쟀다고 해보죠. 이 연필이 9cm와 10cm 사이에 있는데, 10cm 눈금에 더 가깝게 있어요. 그럼 10cm라고 얘기할 수 있죠? 이 10cm는 근삿값이에요. 연필이 9cm보다는 10cm에 더 가깝게 있었기 때문에 실제 연필의 길이는 9.5cm보다는 길거나 같아요.
이번에는 다른 연필을 쟀더니 10cm와 11cm 사이에 있는데, 10cm 눈금에 더 가깝게 있을 때도 10cm라는 근삿값을 얻을 수 있어요. 이때 연필은 10.5cm보다는 더 짧을 거예요.
두 경우에서 모두 10cm라는 길이를 얻었어요. 하지만 실제 길이는 9.5cm ≤ 연필의 길이 < 10.5cm에요.
-0.5 < 오차 ≤ 0.5로 오차가 가장 클 때의 절댓값은 0.5cm에요. 1cm 단위의 자에서 오차의 한계는 0.5cm인 거죠.
오차의 한계는 아래 방법으로 구할 수 있어요.
반올림했을 때: 반올림 받은 자리의 절반
기구를 이용해서 측정했을 때: 최소눈금 단위의 절반
오차의 한계는 절댓값이므로 무조건 양수
다음에서 오차의 한계를 구하여라.
(1) 십의 자리에서 반올림하여 얻은 수 1200
(2) 최소눈금이 10cm인 자로 측정하여 얻은 1m 50cm
(3) 최소눈금이 5g인 저울로 측정하여 얻은 300g
반올림했을 때 오차의 한계는 반올림 받은 자리의 절반이고, 도구를 이용하여 측정했을 때는 최소눈금 단위의 절반이에요. 오차의 한계를 구할 때 근삿값은 전혀 신경 쓰지 않아도 됩니다. 어느 자리에서 반올림했는지 최소눈금 단위가 얼마인지만 보세요.
(1) 십의 자리에서 반올림을 했으니까 백의 자리가 반올림을 받은 자리에요. 오차의 한계는 100 × = 50
(2) 최소눈금 단위가 10cm이므로 오차의 한계는 10 × = 5(cm)
(3) 최소눈금 단위가 5g이므로 오차의 한계는 5 × = 2.5(g)
참값의 범위
근삿값과 오차만 알고, 실제 참값을 모를 때는 참값의 대략적인 범위만 알 수 있어요.
(오차) = (근삿값) - (참값)에서 이항하면 (참값) = (근삿값) - (오차)에요. 그런데 오차를 정확하고 알고 있으면 상관없지만, 오차를 범위로 알고 있을 때, 즉 오차의 한계만 알고 있을 때는 참값을 딱 떨어지는 어떤 값으로 얘기할 수 없어요. 오차는 -(오차의 한계)와 +(오차의 한계) 사이에서 생기기 때문에, 이 오차를 위 식에 대입해서 참값의 범위를 구할 수 있어요.
(근삿값) - (오차의 한계) ≤ (참값의 범위) < (근삿값) + (오차의 한계)
잘 보세요. 왼쪽에는 등호가 있고, 오른쪽에는 등호가 없어요.
다음에서 참값의 범위를 구하여라.
(1) 십의 자리에서 반올림하여 얻은 수 1200
(2) 최소눈금이 10cm인 자로 측정하여 얻은 1m 50cm
(3) 최소눈금이 5g인 저울로 측정하여 얻은 300g
참값의 범위를 구할 때는 먼저 오차의 한계를 구해야 해요. 그리고 근삿값과의 합, 차를 이용해서 참값의 범위를 구하죠.
(1) 십의 자리에서 반올림을 했으니까 백의 자리가 반올림을 받은 자리에요. 오차의 한계는 100 × = 50
1200 - 50 ≤ 참값의 범위 < 1200 + 50
1150 ≤ 참값의 범위 < 1250
(2) 최소눈금 단위가 10cm이므로 오차의 한계는 10 × = 5(cm)
(150 - 5)cm ≤ 참값의 범위 < (150 + 5)cm
145cm ≤ 참값의 범위 < 155cm
(3) 최소눈금 단위가 5g이므로 오차의 한계는 5 × = 2.5(g)
(300 - 2.5)g ≤ 참값의 범위 < (300 + 2.5)g
297.5g ≤ 참값의 범위 < 302.5g
함께 보면 좋은 글
순환소수와 유리수, 순환소수의 대소비교와 사칙연산
현재 우리가 공부했던 가장 큰 수 체계는 유리수예요. 자연수, 정수, 유리수로 그 영역을 넓혀왔죠. 그렇다면 순환소수는 자연수, 정수, 유리수 중에 어느 영역에 속할까요?
순환소수는 기본적으로 소수예요. 그러니까 순환소수가 유한소수인지 무한소수인지도 알아봐야겠죠.
순환소수도 숫자니까 대소를 비교할 수 있어야 하고, 덧셈, 뺄셈, 곱셈, 나눗셈의 사칙연산도 할 수 있어야 해요. 다만, 순환소수는 그 상태 그대로 사칙연산을 하지 않고 변형을 시켜서 사칙연산을 하는데 그 방법을 알아보죠.
순환소수와 유리수
소수에는 유한소수와 무한소수가 있다고 했어요. 순환소수는 같은 부분이 끝도 없이 계속 반복되니까 무한소수예요. 순환소수를 분수로 바꿨더니 아주 잘 바뀌었어요. 분수로 나타낼 수 있는 수는 유리수이므로 순환소수는 유리수지요.
그에 반해 어떤 소수는 특정 부분이 반복되지 않으면서 끝없이 이어지는 소수도 있겠죠? 이 소수도 끝이 없이 계속되니까 무한소수인데, 순환하는 부분이 없어서 순환하지 않는 무한소수라고 합니다. 3.141592…인 원주율 π가 대표적인 순환하지 않는 무한소수예요. 순환하지 않는 무한소수는 분수 꼴로 바꿀 수 없어요. 유리수가 아니에요.
모든 유한소수는 유리수
무한소수 중에서 순환소수는 유리수
무한소수 중에서 순환하지 않는 무한소수는 유리수가 아니다.
→ 무한소수 중에는 유리수도 있고, 유리수가 아닌 것도 있다.
순환소수의 대소비교
소수의 대소비교는 자연수 부분부터 비교하는 거 알고 있죠? 자연수 부분이 같다면 소수점 이하 자릿수를 하나씩 비교하고요. 순환소수도 소수의 한 종류니까 그 방법 그대로 합니다.
순환소수는 순환마디를 그냥 쭉 풀어서 둘을 비교하면 돼요.
세 순환소수에서 소수 셋째 자리까지는 같고, 소수 넷째 자리의 숫자를 보니 순서네요.
순환마디를 풀어서 쓰지 않고 분수로 바꿔서 통분한 다음에 크기를 비교할 수도 있어요.
순환소수의 사칙계산
순환소수의 계산을 할 때는 분수로 바꿔서 계산해요. 순환마디를 쭉 풀어서 계산할 수도 있지만 받아 올림이 생기는 경우라면 계산이 틀리게 될 수 있거든요. 순환소수를 분수로 바꾼 다음에는 통상적인 분수의 계산대로 통분하고, 계산, 약분하면 돼요.
분수로 바꿔서 계산한 다음에 답은 그냥 분수로 둬도 돼요. 굳이 다시 소수로 바꿀 필요는 없어요.
- 순환소수를 분수로
- 통분
- 계산
- 약분
다음을 계산하여라.
순환소수가 포함된 계산에서는 순환소수를 분수로 바꿔서 계산합니다.
함께 보면 좋은 글
유한소수와 무한소수
순환소수와 순환마디, 순환소수 표시법
순환소수를 분수로 나타내기
순환소수를 분수로 나타내기
순환소수는 분수로 나타낼 수 있어요. 분수로 나타낼 수 있다는 얘기는 유리수라는 얘기죠. 반대로 순환소수 아닌 무한소수는 분수로 나타낼 수 없어요. 따라서 순환소수 아닌 무한소수는 유리수가 아니에요……
이 글에서는 순환소수를 분수로 나타내는 방법을 공부할 거예요. 그냥 글만 보고 이해하기에는 너무 어려운 내용이라서 여러 번 반복해서 읽어봐야 이해가 될 겁니다. 어렵긴 하지만 원리를 이해하면 답을 바로 구할 수 있는 공식도 있으니까 끝까지 집중해서 잘 보세요.
글로 된 설명과 그림을 잘 비교하면서 읽어보세요.
순환소수를 분수로 나타내는 방법
순환소수를 분수로 나타낼 때 가장 중요한 건 10의 거듭제곱을 곱해주는 거예요. 10의 거듭제곱을 곱해서 소수점 이하 자리를 같게 만들어준 다음 없애주는 거지요.
순환소수 을 분수로 나타내보죠.
을 풀어서 쓴 0.33333…을 x라고 해 볼까요π
x = 0.33333… 이걸 ①식이라고 하고, ①의 양변에 10을 곱해보죠.
10x = 3.33333…이에요. 이걸 ②식이라고 할게요.
①과 ②의 소수점 이하 부분이 같아요. ②식에서 ①을 빼보죠. 식을 뺄 때는 좌변끼리 빼고, 우변끼리 빼는 거예요.
로 쓸 수 있어요.
방법이 정말 복잡해서 이해하기 어려운 내용이에요. 잘 봐야 해요.
순환소수를 분수로 나타내기
- 주어진 순환소수를 x로 놓는다. - ①식
- 소수점이 순환마디 뒤에 오도록 10의 거듭제곱을 곱한다. - ②식
- 소수점이 순환마디 앞에 오도록 10의 거듭제곱을 곱한다. - ③식
- ② - ③
- 좌변, 우변을 정리 후 x의 계수로 양변을 나눠준다.
- 약분
을 분수로 나타내는 과정이에요. 설명을 하다 보니 숫자가 복잡한데, 실제 이렇게 복잡한 숫자는 나오지 않아요..
약분하면 이네요.
다음 순환소수를 분수로 나타낼 때, 가장 편리한 식을 <보기>에서 찾으시오..
<보기> 10x - x, 100x - x, 1000x – x
100x - 10x, 1000x – 10x
1000x – 100x
소수점을 옮길 때 얼마를 곱해줘야 하는지 찾는 문제입니다. 소수점이 (순환마디 뒤에 있을 때) - (순환마디 앞에 있을 때)가 되어야 해요.
(1)은 순환마디가 2이므로 2 뒤에 소수점이 오려면 10을 곱해서 10x, 2 앞에 소수점이 있으니까 그냥 그대로 x로 하면 되겠네요. 이 둘을 뺀 10x - x가 가장 편리한 식입니다.
(2)는 순환마디가 34이므로 소수점이 34 뒤에 오려면 1000을 곱해서 1000x, 소수점이 34 앞에 오려면 10을 곱해서 10x가 되므로 1000x - 10x가 되어야 하고요.
(3)은 순환마디가 3으로 소수점이 3 뒤에 오려면 1000을 곱해서 1000x, 소수점이 3 앞에 오려면 100을 곱해서 100x가 되므로 1000x - 100x가 되겠네요..
순환소수를 분수로 나타내는 공식
위의 과정으로 순환소수를 분수로 나타내다 보니 너무 복잡해요. 그래서 결과로 바로 갈 수 있는 공식이 있는데, 이걸 외워야 합니다. 그런데 위 내용을 모르면 공식을 외울 수 없어요.
공식이라고 해서 딱 줄여서 쓸 수 있는 표현법이 마땅히 없어요. 설명을 잘 보고 이해하세요.
순환소수를 분수로 나타내는 거니까 분모, 분자가 있겠죠?
분모는 순환마디의 숫자만큼 9를 써줘요. 순환마디가 두 자리면 99, 세 자리면 999를 쓰는 거죠. 그리고 소수점 이하 자리에서 순환마디가 아닌 자리의 개수만큼 9 뒤에 0을 써줘요.
위 그림의 는 순환마디가 3자리이므로 999를 먼저 쓰고 소수점 이하에서 순환마디가 아닌 숫자가 하나 있으니까 뒤에 0을 하나 붙인 9990이 분모가 되는 거예요.
분자는 소수점을 고려하지 않은 전체 수에서 순환하지 않는 부분의 수를 그냥 빼주세요. 에서 소수점을 고려하지 않은 전체 수는 10123이고 순환하지 않는 부분의 수는 10이죠. 10123 - 10 = 10113이 분자가 됩니다.
순환소수를 분수로 나타내는 공식
- 분모는 순환마디의 숫자 개수만큼 9를 써주고, 9 뒤에 소수점 이하에서 순환마디가 아닌 숫자의 개수만큼 0을 붙여준다.
- 분자 = (소수점을 고려하지 않은 전체 수) - (순환하지 않는 부분의 수)
- 분자, 분모를 약분
0.2353535………를 공식을 이용해서 분수로 바꾸는 과정이에요.
다음 순환소수를 분수로 나타내어라.
(1) 순환마디는 1자리, 소수점 이하 순환하지 않는 숫자는 2개이므로 분모는 900
소수점을 고려하지 않은 전체 수는 1235, 순환하지 않는 부분의 숫자는 123이므로 분자는 1235 - 123
(2) 순환마디는 3자리, 소수점 이하 순환하지 않는 숫자가 없어서 0을 붙일 필요가 없으므로 분모는 999
소수점을 고려하지 않은 전체 수는 123, 순환하지 않는 부분은 0이므로 분자는 123 - 0
(3) 순환마디는 2자리, 소수점 이하 순환하지 않는 숫자는 1개이므로 분모는 990
소수점을 고려하지 않은 전체 수는 12345, 순환하지 않는 부분은 123이므로 분자는 12345 - 123
(4) 순환마디는 1자리, 소수점 이하 순환하지 않는 숫자는 0개이므로 분모는 9
소수점을 고려하지 않는 전체수는 9, 순환하지 않는 숫자는 0이므로 분자는 9 - 0
0.9999999999………라서 절대로 1은 안될 것 같은데, 1하고 같아요. 0.99990.9999999999……… 가 1과 같은 이유
함께 보면 좋은 글
유한소수와 무한소수
순환소수와 순환마디, 순환소수 표시법
순환소수와 유리수, 순환소수의 대소비교와 사칙연산
순환소수와 순환마디, 순환소수 표시법
소수에 대해서 공부하고 있어요.
이번 글에서는 소수 중에서 순환소수에 대해서 공부할 거예요. 순환소수의 특징과 순환소수를 표시하는 방법까지요. 순환소수는 순환마디라는 걸 이용한 특별한 표시 방법이 있거든요.
또 순환소수는 유한소수와 무한소수 중 어디에 속하는지도 알아볼 거예요. 정의만 알면 금방 알 수 있는 부분이긴 하죠.
나눗셈을 많이 해야 하기 때문에 조금은 귀찮은 내용일 수도 있지만 잘 참고 해봐요.
순환소수와 순환마디
순환이라는 단어는 주기적으로 반복되는 걸 말해요. 그러니까 순환소수는 어떤 게 주기적으로 반복되는 소수를 말하죠. 소수점 아래의 일정한 숫자의 배열이 반복되는 소수를 순환소수라고 해요.
예를 들어 0.3333…은 3이 계속 반복되죠? 0.121212…는 12가 계속 반복돼요. 이런 걸 순환소수라고 합니다. 참고로 0.123124125126…은 12O가 반복되는 특징이 있지만 이건 순환소수가 아니에요. 똑같은 게 계속 반복되어야 해요.
순환소수에서 소수점 아래의 반복되는 부분을 순환마디라고 해요. 0.3333…에서는 3, 0.121212…에서는 12가 순환마디가 되는 거죠.
0.1212121…에서 소수 둘째 자리부터 21이 계속 반복된다고 볼 수도 있어요. 순환마디가 21이 아니냐고 할 수도 있겠죠? 하지만 무조건 처음 반복되는 것부터 순환마디를 정해야 해요.
순환소수를 쓸 때는 …을 찍어서 쓸 수도 있지만 좀 더 정확한 표현법이 있어요. 순환마디의 첫 번째와 마지막 숫자의 바로 위에 점을 찍어서 표시해요. 순환마디가 한 자리일 때는 점을 한 번만 찍고요.
0.123123…에서는 순환마디가 123이죠? 첫 번째 1과 마지막 3의 위에 점을 찍어서 나타냈어요.
다음 분수를 순환소수로 나타내어라.
분수를 순환소수로 나타내려면 실제로 나누기를 해봐야 해요. 그래서 반복되는 부분을 찾아야 하죠. 반복되는 부분이 순환마디이고, 순환마디의 첫 번째와 마지막 숫자 위에 점을 찍어서 나타냅니다.
(1) 로 소수점 아래에서 5가 계속 반복돼요. 5가 순환마디죠. 따라서 순환소수로 나타내면
가 되겠네요.
(2) 에서는 6이 반복되는 순환마디에요. 순환소수로 나타내면
이 됩니다.
(3)에서는 소수점 아래의 15가 계속 반복되는 순환마디에요. 순환소수로 나타내면
이에요.
함께 보면 좋은 글
유한소수와 무한소수
순환소수를 분수로 나타내기
순환소수와 유리수, 순환소수의 대소비교와 사칙연산
유한소수와 무한소수
새로운 학년이 되었네요. 1학년 수학은 기초편이고, 이제부터 진짜 수학이 시작되는 거예요. 재밌겠죠? 조금 어렵긴 하지만 1학년 때보다는 덜 지루할 거예요.
처음으로 공부할 내용은 유리수의 확장판인데요, 유리수를 조금 더 세분화해서 나눌 거예요. 유한소수와 무한소수입니다. 우리가 알고 있던 유리수를 조금 더 자세히 공부하는 거죠.
유한소수와 무한소수의 뜻과 차이점을 알아봐요. 첫 시간인 만큼 조금만 할게요. 하지만 수의 체계와 관계있는 내용이니까 꼭 기억하고 있어야 해요.
유리수
일단 1학년 때 배웠던 유리수에 대해서 한 번 정리해볼까요?
유리수는 분수꼴로 나타낼 수 있는 수라고 했어요. 부호에 따라 양의 유리수, 0, 음의 유리수가 있지요. 유리수를 다른 방법으로 분류하면, 정수와 정수가 아닌 유리수로 나눌 수 있다고도 했어요.
유한소수와 무한소수
정수 아닌 유리수를 조금 더 자세히 나눠보죠.
유리수는 분수꼴로 나타냈었는데, 이걸 소수로 바꿔보는 거예요. 여기서 소수는 소수와 합성수에서의 소수가 아니라 0.1, 0.2처럼 소수점이 있는 숫자를 말해요.
는 소수점 아래 숫자가 어느 정도 이어지다가 멈추는 소수지만
는 0.6666…처럼 소수점 아래에서 숫자가 멈추지 않고 계속되죠? 이렇게 분수를 소수로 바꿨을 때 숫자가 계속되지 않고 멈추는 소수를 유한소수, 멈추지 않고 계속해서 이어지는 소수를 무한소수라고 해요.
0.5000…처럼 0이 계속되는 건 무한소수가 아니라 유한소수입니다. 0은 취급하지 않아요.
유한소수와 무한소수를 조금 더 정확하게 정의하면 아래와 같아요.
유한소수: 소수점 아래에 0이 아닌 숫자가 유한개인 소수
무한소수: 소수점 아래에 0이 아닌 숫자가 무한히 계속되는 소수
유한소수의 유한은 한계가 있다는 뜻으로 소수점 아래의 숫자들이 끝나는 지점이 있다는 얘기에요. 무한소수의 무한은 소수점 아래에 숫자들이 끝도 없이 계속된다는 뜻이고요.
유한소수와 무한소수 구별법
어떤 분수가 유한소수인지 무한소수인지를 구별하려면 실제로 분자를 분모로 나눠봐야 할까요? 소수점 아래 100번째 자리에서 끝날 수도 있고, 1,000번째 자리에서 끝날 수도 있는데 직접 나눠보는 건 정말 귀찮은 방법이죠. 그래서 분수를 나눠보지 않고, 유한소수인지 무한소수인지 구별하는 방법이 있는데, 이걸 알아보죠.
우선 1단계는 분수의 분자와 분모를 약분해서 기약분수로 만들어요. 그다음 분모를 소인수분해합니다. 분자는 할 필요 없어요. 분모의 소인수가 2나 5뿐이라면 이 분수는 유한소수, 2나 5 외에 다른 소인수가 있다면 이 분수는 무한소수에요.
소인수가 2나 5뿐이라는 건 거듭제곱이어도 상관없다는 거예요. 2, 22, 23, 5, 52, 22 × 53 등 어떤 것도 가능하다는 얘기죠.
몇 가지 해볼까요?
기약분수로 바꾼 후 분모를 소인수분해했더니 소인수가 2만 있어요. 2나 5만 있으면 유한소수니까 2만 있는 은 유한소수로 나타낼 수 있어요. 실제 소수로 나타내면 0.25에요.
만약에 기약분수로 약분하지 않고 바로 소인수분해를 해버리면 분모가 120 = 23 × 3 × 5가 돼요. 그러면 분모에 2, 5 말고 3이 있으니까 무한소수로 나와서 답이 틀리게 되죠. 따라서 꼭 기약분수로 약분을 먼저 해야 합니다.
기약분수로 바꾼 후 분모를 소인수분해 했더니 3과 5가 있네요. 5 외에 3이 있으므로 무한소수에요. 실제 소수로 나타내면 0.466666…이 네요.
다음 분수 중 유한소수로 나타낼 수 있는 걸 모두 고르시오.
분수가 유한소수인지 무한소수인지 구별하려면 기약분수로 약분한 다음, 분모를 소인수분해해서 소인수가 2나 5뿐인지 보는 거죠.
(1) 에서 분모의 소인수에 11이 있으니까 무한소수네요.
(2) 에서 분모의 소인수가 5뿐이므로 유한소수
(3) 에서 분모의 소인수가 2, 5뿐이므로 유한소수
(4) 에서 분모의 소인수에 3이 있으므로 무한소수
함께 보면 좋은 글
순환소수를 분수로 나타내기
순환소수와 유리수, 순환소수의 대소비교와 사칙연산
[중등수학/중1 수학] - 유리수, 유리수의 분류