고등수학

사칙연산이 아닌 새로운 연산을 공부할 겁니다. 공통으로 사용되는 연산이 아니라 특정한 문제에서만 사용되는 연산이 있는데, 이들 연산을 계산하는 방법과 중학교에서 공부했던 연산법칙(교환법칙, 결합법칙, 분배법칙) 사이의 관계를 공부할 거예요.

역수 알죠? 분자와 분모를 뒤집어서 쓰는 숫자잖아요. 오늘 이 글에서 항등원과 역원을 공부하면 왜 역수라고 하는지 이해할 수 있을 거예요. 항등원역원은 간단한 계산 문제니까 덧셈, 뺄셈만 잘 하면 맞출 수 있어요. 용어만 헷갈리지 않도록 주의하세요.

실수의 연산법칙

중학교 때 배웠던 연산법칙 세 가지가 있죠?

  • 교환법칙: a + b = b + a, ab = ba
  • 결합법칙: (a + b) + c = a + (b + c), (ab)c = a(bc)
  • 분배법칙: (a + b)c = ac + bc

교환법칙과 결합법칙은 덧셈과 곱셈에서만 성립해요. 뺄셈과 나눗셈에서는 성립하지 않습니다. 분배법칙은 괄호 안은 덧셈이나 뺄셈이어야 하고, 괄호 밖은 곱셈이나 나눗셈이어야 해요. 괄호 안이 곱셈이거나 괄호 바깥이 뺄셈이면 성립하지 않아요.

이제부터는 사칙연산뿐 아니라 새로운 연산들이 많이 나와요. 심지어는 해당 문제에서만 사용되는 새로운 연산을 만들 수 있어요. 예를 들어서 "a ⊙ b = 2a + b + 1로 정의할 때" 같은 문장을 넣을 수 있다는 거죠. 그러면 그 문제는 문장에 나온 그대로 계산을 해야 해요. 참고로 이 기호는 이름이 없으니까 "a 연산 b"라고 읽으세요.

이처럼 새로운 연산을 만든다 하더라도 위 법칙은 유효합니다.

임의의 세 수 a, b, c에 대하여
교환법칙 성립 ⇔ a ⊙ b = b ⊙ a
결합법칙 성립 ⇔ (a ⊙ b) ⊙ c = a ⊙ (b ⊙ c)
분배법칙 성립 ⇔ (a ⊙ b) △ c = (a △ c) ⊙ (b △ c)

모든 실수에 대하여 연산 △를
 a △ b = a + kb - 3
라고 정의할 때, 이 연산에 대해서 교환법칙이 성립한다고 한다. 상수 k의 값을 구하여라.

일단 연산 △은 (연산 기호 앞의 숫자) + k × (연산 기호 뒤의 숫자) - 3이라고 정의되어 있어요.

교환법칙이 성립한다면 두 실수 a, b에 대하여 a △ b = b △ a가 성립해요. 대입해보죠.

a △ b = b △ a
a + kb - 3 = b + ka - 3
k(b - a) = b - a
k = 1

항등원과 역원

항등원과 역원에 대해 설명을 하기 전에 알아야 할 게 있어요. 항등원과 역원을 구하려면 일단 그 연산에 대하여 닫혀있어야 하고, 교환법칙이 성립해야 합니다. 이 두 가지 조건이 갖추어지지 않았으면 항등원과 역원을 구할 수 없어요.

항등원과 역원을 구하라는 문제는 이 두 조건을 만족한다는 전제가 깔렸으니까 따로 확인해볼 필요는 없어요. 단, 항등원을 구할 수 있는가를 물어보는 경우에는 이 두 가지를 확인하세요.

항등원

집합 S의 임의의 원소 a와 원소 e를 연산한 결과가 a가 될 때 e를 연산에 대한 항등원이라고 해요. 쉽게 말하면 연산을 한 결과가 자기 자신이 되도록 하는 수지요.

10에 0을 더하면 원래 수인 10이 돼요. 100에 0을 더해도 100이 되죠. 덧셈에서는 어떤 수에 0을 더하더라도 원래 수가 나오잖아요. 이때 0을 덧셈에 대한 항등원이라고 해요.

곱셈에서는 어떤 수에 1을 곱하더라도 원래 수가 나와요. 따라서 곱셈에 대한 항등원은 1이에요.

항등원: a ∈ S일 때 a ⊙ e = e ⊙ a = a를 만족하는 e (e ∈ S)

항등원은 그 연산에서 딱 하나만 있어요. 덧셈에는 0, 곱셈에는 1만 항등원이에요.

연산을 어떻게 정의하느냐에 따라서 항등원이 없을 수도 있어요.

역원

집합 S의 임의의 원소 a와 x를 연산한 결과가 항등원 e가 될 때 x를 연산에 대한 a의 역원이라고 해요. 항등원이 나오게 하는 수지요.

10에 -10을 더하면 덧셈의 항등원인 0이 되죠? 그래서 덧셈에 대한 10의 역원은 -10이에요. 덧셈에 대한 20의 역원은 -20이죠.

10에 얼마를 곱해야 곱셈에 대한 항등원인 1이 나오나요? 10의 역수이에요. 20에 20의 역수을 곱하면 1이 나오죠? 곱셈에 대한 역원은 역수에요.

역원: a ∈ S일 때, a ⊙ x = x ⊙ a = e를 만족하는 x (x ∈ S)

역원은 하나의 연산에서 하나만 있는 게 아니에요. 같은 연산이라 하더라도 숫자마다 달라져요. 덧셈에 대한 10과 20의 역원이 달랐죠?

역원은 연산 결과가 항등원이 나오는 수에요. 따라서 역원을 구하려면 항등원을 미리 구해야 해요. 항등원이 없으면 역원도 없어요. 또, 연산을 어떻게 정의하느냐에 따라서 항등원만 있고, 역원이 없는 경우도 있습니다.

항등원은 연산에 대해서 하나만 존재하기 때문에 문제에서도 그냥 항등원을 구하라고 나와요. 역원은 숫자마다 달라져요. 따라서 문제에서는 "3의 역원을 구하여라. 4의 역원을 구하여라."처럼 숫자를 하나 지정해주고 그 숫자의 역원을 구하게 됩니다.

모든 실수에 대하여 연산 △를
 a △ b = a + b - 3
라고 정의할 때, 연산 △에 대한 항등원과 5의 역원을 구하여라.

항등원을 e, 5의 역원을 x라고 해보죠.

항등원은 a △ e = e △ a = a를 만족하는 e를 구하는 거니까 식에 대입해보면
a + e - 3 = a
e = 3

연산 △에 대한 항등원은 3이네요.

5의 역원은 연산한 결과가 항등원 3이 나오는 x에요.
5 △ x = x △ 5 = 3
5 + x - 3 = 3
x = 1

연산 △에 대한 5의 역원은 1이네요.

함께 보면 좋은 글

실수 체계, 실수의 분류, 연산에 대하여 닫혀있다
[중등수학/중1 수학] - 분배법칙, 분배법칙, 교환법칙, 결합법칙 비교

정리해볼까요

실수의 연산법칙

  • 교환법칙: a ⊙ b = b ⊙ a
  • 결합법칙: (a ⊙ b) ⊙ c = a ⊙ (b ⊙ c)
  • 분배법칙: (a ⊙ b) △ c = a △ c ⊙ b △ c

항등원과 역원

  • 조건: 연산 ⊙에 대하여 닫혀있어야 하고, 교환법칙이 성립
  • 항등원: a ⊙ e = e ⊙ a = a가 성립하는 e. (a, e ∈ S)
  • 역원: a ⊙ x = x ⊙ a = e가 성립하는 x (a, e, x ∈ S)
 
그리드형

수학에서 사용하는 가장 기초적인 부분이 바로 숫자에요. 이 글에서는 숫자의 체계에 대해서 한 번 더 정리합니다. 이미 알고 있는 거니까 간단하게 보고 넘어가죠.

연산에 대해서 닫혀있다는 용어에 대해서 공부할 거예요. 사실 아주 중요한 내용은 아닌데요, 다음에 공부할 항등원과 역원의 전제조건이 되는 내용이기 때문에 이해는 하고 있어야 해요.

복잡하지는 않으니까 가볍게 읽는다는 생각으로 공부하세요.

실수 체계, 실수의 분류

실수 체계는 [중등수학/중3 수학] - 무리수와 실수, 실수체계에서 공부한 적이 있어요. 한 번 정리해보죠.

무리수와 실수

무리수와 실수 - 벤다이어그램

이 두 그림이면 실수체계에 대해서는 완전히 설명할 수 있으니까 잘 익혀두세요. 앞으로 실수 범위를 넘어선 수의 체계를 공부할 건데 그것과 헷갈리면 안 되니까요.

문제에서 수에 대해서 아무런 언급이 없다면 실수 범위의 수를 사용한다고 생각하세요.

연산에 대하여 닫혀있다

공집합이 아닌 어떤 집합 S에서 임의의 원소 2개를 뽑아서 어떤 연산을 한 결과가 항상 집합 S의 원소일 때, 집합 S는 그 연산에 대해서 닫혀있다고 합니다.

예를 들면 자연수의 집합에서 임의의 두 수를 뽑아서 더하면 그 결과인 수는 다시 자연수 집합의 원소가 되잖아요. 이때, 자연수 집합은 덧셈에 대하여 닫혀있다고 하는 거지요.

임의의 원소 2개는 같을 수도 있고 다를 수도 있어요. 그리고 최소한 1개의 원소를 선택해야 하니까 원소가 하나도 없는 공집합은 제외합니다. 닫혀있다의 반대는 "열려있다"가 아니라 "닫혀있지 않다."에요.

아래 표는 수의 체계와 사칙연산에 대하여 닫혀있는지를 나타내는 표에요. 이 표를 잘 이해하세요. 객관식 문제로 자주 나옵니다. 나눗셈에서 0으로 나누는 건 제외해요.

사칙연산과 연산에 대하여 닫혀있다
자연수 정수 무리수 유리수 실수
+ X
- X X
× X
÷ X X X

어떤 수 집합이 닫혀있지 않다는 것을 증명하려면 명제의 참, 거짓에서 사용했던 것처럼 반례를 하나만 찾으면 돼요.

자연수에서 1 - 2 = -1로 결과가 자연수가 아니에요. 따라서 자연수는 뺄셈에 대해서 닫혀있지 않죠. 마찬가지로 1 ÷ 2 = ½로 자연수가 아니어서 나눗셈에 대해서도 닫혀있지 않아요. 덧셈과 곱셈에 대해서는 닫혀있어요.

정수는 1 ÷ 2 = ½로 정수가 아니라서 정수는 나눗셈에 대해서 닫혀있지 않아요. 덧셈, 뺄셈, 곱셈에 대해서는 닫혀있어요.

무리수는 사칙연산 모두에 대하여 닫혀있지 않아요. 루트 2 + (-루트 2) = 0으로 유리수고요. 루트 2 - 루트 2 = 0으로 유리수, 루트 2 × 루트 2 = 2로 유리수, 루트 2 ÷ 루트 2 = 1로 유리수잖아요.

유리수와 실수는 어떤 수를 사용해도 사칙연산한 결과가 유리수, 실수가 나와요. 따라서 유리수와 실수는 사칙연산에 대해서 닫혀있어요.

집합 S = {-1, 0, 1}일 때, 사칙연산 중 어느 연산에 대하여 닫혀있는가? (단, 0으로 나누는 것은 제외)

연산에 대하여 닫혀있으려면 집합의 임의의 원소 두 개를 선택해서 연산한 결과가 다시 집합의 원소여야 돼요.

원소가 몇 개 안 되니까 직접 연산을 해서 결과를 찾아보죠.

덧셈에 대하여 닫혀있는지 확인
+ -1 0 1
-1 -2 -1 0
0 -1 0 1
1 0 1 2

뺄셈에 대하여 닫혀있는지 확인
- -1 0 1
-1 0 -1 -2
0 1 0 -1
1 2 1 0

곱셈에 대하여 닫혀있는지 확인
× -1 0 1
-1 1 0 -1
0 0 0 0
1 -1 0 1

나눗셈에 대하여 닫혀있는지 확인
÷ -1 0 1
-1 1 X -1
0 0 X 0
1 -1 X 1

덧셈과 뺄셈의 연산 결과에서는 집합 S의 원소가 아닌 -2, 2가 있어서 집합 S는 덧셈과 뺄셈에 대해서는 닫혀있지 않네요. 곱셈과 나눗셈은 연산 결과가 모두 집합 S = {-1, 0, 1}에 포함되어 있어요. 따라서 집합 S는 곱셈과 나눗셈에 대하여 닫혀있어요.

함께 보면 좋은 글

명제의 참, 거짓, 반례
항등원과 역원, 연산법칙
실수의 대소관계, 실수의 대소관계에 대한 기본 성질
[중등수학/중3 수학] - 무리수와 실수, 실수체계
[중등수학/중1 수학] - 유리수, 유리수의 분류

정리해볼까요

연산에 닫혀있다.

  • 공집합이 아닌 집합 S에서 임의의 원소 2개를 선택해서 연산한 결과가 다시 집합 S의 원소일 때, 집합 S는 연산에 대해서 닫혀있다라고 한다.
 
그리드형

명제 p → q에서 가정인 p와 결론인 q는 조건이에요.

명제 p → q가 참이면 p와 q가 그냥 조건이 아니라 이름이 생겨요. 필요조건, 충분조건, 필요충분조건이라는 이름인데, 언제 어떤 경우에 이런 이름으로 부르는지 공부할 거예요.

또, 필요조건, 충분조건, 필요충분조건과 진리집합 사이의 관계도 알아볼거고요.

여기서는 부등식, 수직선과 관련된 문제들도 많이 나오니까 연립부등식, 연립부등식의 풀이했던 내용을 다시 한 번 떠올려보세요.

필요조건, 충분조건, 필요충분조건

명제의 참, 거짓, 반례에서 명제 p → q가 참일 때 기호로 p ⇒ q로 쓴다고 했죠? 이때, 조건 p를 q이기 위한 충분조건, 조건 q를 p이기 위한 필요조건이라고 해요.

화살표가 나가는 가정이 충분조건, 화살표를 받는 결론이 필요조건이죠.

가정        결론
p    ⇒    q
P    ⊂    Q
충분조건     필요조건

만약에 q → p라면 q는 p이긴 위한 충분조건, p는 q이기 위한 필요조건이에요.

p ⇔ q라면 어떨까요? 화살표는 주는 게 충분조건, 받는 게 필요조건인데, 이때 p와 q는 화살표를 주기도 하면서 받기도 하죠? 그래서 필요조건이면서 충분조건이므로 줄여서 p는 q이기 위한 필요충분조건이라고 해요. 마찬가지로 q도 p이기 위한 필요충분조건이에요.

진리집합

p의 진리집합을 P, q의 진리집합을 Q라고 할 때, p ⇒ q라면 P ⊂ Q에요. q ⇒ p라면 Q ⊂ P죠.

p ⇔ q라면 어떻게 될까요? P ⊂ Q이고, Q ⊂ P에요. 부분집합, 부분집합의 개수 구하기에서 A ⊂ B이고 B ⊂ A면 A = B라고 했죠? 따라서 p ⇔ q이면 P = Q에요.

P ⊂ Q이면 p는 q이기 위한 충분조건
P ⊂ Q이면 q는 p이기 위한 필요조건
P = Q이면 p는 q이기 위한 필요충분조건

조건은 필요조건, 충분조건, 필요충분조건 세 가지가 있어요. 이 중에서 필요충분조건은 진리집합이 서로 같은 경우라서 알아보기 쉬워요. 남은 건 충분조건과 필요조건인데, 둘 중 하나만 구별하는 법을 정확하게 알아두세요. 하나만 정확하게 파악하면 나머지 하나는 자동으로 결정되는 거잖아요.

충분조건: 가정, 화살표가 나가는 쪽, 부분집합
필요조건: 결론, 화살표를 받는 쪽, 부분집합을 포함하는 집합
필요충분조건: 충분조건 + 필요조건

두 조건 p: a ≤ x < 5, q: 3 < x ≤ b에서 조건 p가 q이긴 위한 필요조건이고, q는 p이기 위한 충분조건일 때, a, b의 범위를 구하여라.

p가 필요조건, q가 충분조건으로 필요조건인 p가 화살표를 받는 형태인 q ⇒ p이고, 진리집합은 Q ⊂ P에요. 부등식을 수직선에 나타내보면 쉬워요.

필요충분조건 예제 풀이

3 < x ≤ b가 a ≤ x < 5의 안에 들어가야 하니까 수직선으로 그려보면 위 그림처럼 돼요.

a는 3보다 왼쪽에 있으면 되는데, 3이 되어도 괜찮죠? Q에는 3이 포함되어 있지 않으니까요. 따라서 a ≤ 3이에요.

b는 5보다 왼쪽에 있으면 되는데, 5가 되면 안 돼요. Q에는 5가 들어있는데, P에 5가 들어있지 않으면 Q ⊂ P가 안 되잖아요. b < 5여야 하는데 여기에 3 < x이므로 b도 3보다 커야 해요. 따라서 3 < b < 5

함께 보면 좋은 글

부분집합, 부분집합의 개수 구하기
명제와 조건, 진리집합, 조건의 부정
명제의 참, 거짓, 반례
명제의 역, 이, 대우, 삼단논법

정리해볼까요

명제 p → q가 참일 때

  • p는 q이기 위한 충분조건.
  • q는 p이기 위한 필요조건.

p ⇔ q이면

  • p는 q이기 위한 필요충분조건
  • q는 p이기 위한 필요충분조건

조건과 진리집합

  • P ⊂ Q이면 p는 q이기 위한 충분조건
  • P ⊂ Q이면 q는 p이기 위한 필요조건
  • P = Q이면 p는 q이기 위한 필요충분조건
그리드형

하나의 명제를 모양을 바꿔서 여러 개의 명제로 만들 수 있어요. 이런 명제들을 명제의 역, 이, 대우라고 하는데, 그림을 통해서 이해하는 게 제일 빠른 방법이에요. 그림을 통째로 외우세요.

논리에서 사용하는 삼단논법이라는 용어도 공부할 거예요. 사실 별거 없어요. 그냥 연결하는 것만 잘하면 되니까요.

명제의 대우와 삼단논법을 연결해서 참, 거짓인 명제를 찾는 문제가 많이 나오니까 이런 유형도 연습해두세요.

명제의 역, 이, 대우

명제 p → q에서 조건 p를 가정, 조건 q를 결론이라고 한다고 했어요.

여기서 p와 q의 자리를 바꿔볼까요? q → p가 되겠죠? 이때는 조건 q가 가정, 조건 p가 결론이에요. 이렇게 원래의 명제에서 가정과 결론을 바꾼 걸 명제의 역이라고 해요.

이번에는 원래 명제의 부정을 해볼까요? p → q의 부정은 "~p → ~q"가 되는데, 원래 명제의 부정인 명제를 명제의 이라고 합니다.

마지막으로 원래 명제에서 가정과 결론도 바꾸고, 부정을 해보죠. 즉 원래 명제의 이의 역이에요. ~q → ~p가 되는데 이걸 명제의 대우라고 합니다.

명제의 역, 이, 대우

집합의 연산법칙에서 어떤 집합의 여집합의 여집합은 자기 자신이었죠? (AC)C = A. 마찬가지로 명제의 역의 역은 원래 명제에요. 서로 역인 관계죠. 이와 대우도 마찬가지고요. 위 그림을 이해할 수 있겠죠?

어떤 명제가 있을 때, 그 명제와 명제의 대우는 참, 거짓을 함께해요. 명제가 참이면 명제의 대우도 참이고, 명제가 거짓이면 대우도 거짓이죠.

명제와 대우가 일치하는 건 진리집합을 생각해보면 돼요. p → q가 참이면 진리집합은 P ⊂ Q에요. 벤다이어그램으로 나타내면 아래 그림처럼 되죠.

명제와 대우의 진리집합 벤다이어그램

위 그림에서 QC ⊂ PC가 되니까 ~q → ~p도 참이 되는 거죠.

명제와 이, 명제와 역은 참, 거짓이 아무런 상관이 없어요. 단, 이와 역은 서로 대우 관계이므로 참, 거짓이 같아요.

다음 명제의 역, 이, 대우를 말하고, 참 거짓을 판별하여라.
x = 2이면  x2 = 4이다

명제의 역은 가정과 결론을 바꾼 것, 이는 가정과 결론을 부정한 것, 대우는 가정과 결론을 바꾸고 부정한 것이에요.

위 명제에서 가정 p는 x = 2이고, 결론 q는 x2 = 4네요.

명제 p → q : x = 2이면 x2 = 4이다
역 q → p: x2 = 4이면 x = 2이다
이 ~p → ~q: x ≠ 2이면, x2 ≠ 4이다.
대우 ~q → ~p: x2 ≠ 4이면 x ≠ 2이다.

일단 명제는 x = 2이면 x2 = 4니까 참이죠?
역에서 x2 = 4이면 x = ±2이므로 거짓이죠.
x = -2일 때, x2 = 4이므로 이도 거짓이고요.
x2 ≠ 4이면 x ≠ ±2이므로 대우는 참이에요.

명제와 대우는 참, 거짓을 같이하고, 이와 역도 서로 대우 관계이므로 참, 거짓을 같이하죠. 단, 명제와 이, 명제와 역은 참, 거짓을 함께하지 않아요.

삼단논법

논리에서 대전제, 소전제, 결론을 얻는 방법을 삼단논법이라고 하는데, 명제에서도 이 삼단논법이 성립해요.

명제 p → q가 참이고, 명제 q → r이 참이면 p → r도 참이다.

삼단논법은 진리집합으로 설명하면 쉬워요.

삼단논법

p → q가 참이면 P ⊂ Q에요.
q → r이 참이면 Q ⊂ R이죠.
P ⊂ Q ⊂ R이 되어서 P ⊂ R이므로 p → r이 참이 되죠.

p → q와 ~r → p가 참일 때, 반드시 참인 명제를 써라.

참인 명제의 대우는 참이므로 p → q의 대우 ~q → ~p도 참이에요.
~r → p의 대우 ~p → r도 참이고요.
삼단 논법에 따르면 ~r → p → q가 돼요. 따라서 ~r → q가 참이죠.
~r → q가 참이므로 그 대우인 ~q → r도 참이죠.

보기 포함해서 총 6개의 명제가 참이에요.

함께 보면 좋은 글

명제, 명제의 가정과 결론, 명제의 역
명제와 조건, 진리집합, 조건의 부정
명제의 참, 거짓
필요조건, 충분조건, 필요충분조건

정리해볼까요

명제의 역, 이, 대우

  • 명제: p → q
  • 역: q → p
  • 이: ~p → ~q
  • 대우: ~q → ~p
  • 명제와 대우는 참, 거짓을 함께, 이와 역도 참, 거짓을 함께
  • 명제와 이, 명제와 역은 참, 거짓이 상관없음.

삼단논법

  • p → q, q → r이 참이면 p → r도 참
  • p → q → r
 
그리드형

명제의 참, 거짓, 반례

2013. 2. 23. 12:30

명제에는 진리집합이라는 게 있다고 했어요. 이 진리집합을 이용해서 명제의 참, 거짓을 판단해요. 진리집합을 이용하지 않고 반례를 이용하는 경우도 있고요. 두 가지 방법을 다 알고 있다가 문제에 맞게 편리한 방법을 사용하면 돼요.

개인적으로는 명제 단원에서 가장 어려운 내용이라고 생각하는 단원이에요. 명제의 참, 거짓을 판별하는 방법 자체는 어렵지 않지만, 실제 문제에서는 어려워지죠. 진리집합과 반례를 찾는 게 어렵거든요. 한 두 가지씩 빠뜨리는 실수가 많이 나오기도 해요.

반례를 찾는 건 연습이 많이 필요해요. 교과서나 익힘책의 문제를 많이 풀어보세요.

명제의 참, 거짓

두 조건 p, q가 "p이면 q 이다."의 꼴로 되어 있는 명제를 기호로 "p → q" 로 나타내요. 이때 p를 가정, q를 결론이라고 하죠.

명제의 가정과 결론

특히 명제 p → q가 참이면 화살표에 줄을 하나 더 그어서 명제의 참, 거짓 - 참라고 하고, 거짓이면 명제의 참, 거짓 - 거짓라고 해요. 또 p → q도 참이고, q → p도 참이면 명제의 참, 거짓라고 나타냅니다.

명제의 참, 거짓을 판별할 때는 진리집합을 이용하는 게 아주 좋아요. 진리집합의 부분집합의 성질을 이용하거나 벤다이어그램을 이용하는 거죠.

명제 p → q에서 조건 p의 진리집합을 P, 조건 q의 진리집합을 Q라고 할 때
명제의 참, 거짓 - 참이면 P ⊂ Q
명제의 참, 거짓 - 거짓이면 P 부분집합이 아님 Q

위 내용은 거꾸로도 성립해요. 부분집합이면 참, 부분집합이 아니면 거짓이죠.

"x = 1이면 x2 = 1이다."라는 명제가 참인지 거짓인지 알아보죠.

명제: x = 1이면 x2 = 1이다.
p q
조건 x = 1 x2 = 1
진리집합 P = {1} Q = {-1, 1}
부분집합 P ⊂ Q
참, 거짓

이번에는 p와 q를 바꿔서 "x2 = 1이면 x = 1이다."로 해볼까요?

명제: x2 = 1이면 x = 1이다.
p q
조건 x2 = 1 x = 1
진리집합 P = {-1, 1} Q = {1}
부분집합 P 부분집합이 아님 Q
참, 거짓 거짓

반례

명제의 참, 거짓을 알아내는 또 다른 방법은 반례를 이용하는 거예요. 반례는 명제가 거짓이라는 걸 보여주는 예에요.

"자연수 x에 대하여, x가 짝수이면 x < 10이다."라는 명제가 있다고 해보죠.

12, 14, 16, … 처럼 10보다 큰 짝수가 있어요. 따라서 명제가 틀렸어요. 이때, 10보다 크다고 보여줬던 짝수들의 예가 바로 반례에요.

명제가 거짓임을 밝히기 위해서 반례를 보여주면 되는데, 반례는 1개만 있으면 돼요. 위에서 12, 14, 16, …라는 반례를 보여줘도 되지만, 12라는 반례만 보여줘도 명제가 거짓이라는 걸 알 수 있죠?

명제의 참, 거짓
진리집합 이용 - P ⊂ Q이면 참 
반례가 1개라도 있으면 거짓

다음 명제의 참, 거짓을 밝혀라.
(1) x가 6의 약수이면 x는 12의 약수이다.
(2) xy > 0 이면 x > 0, y > 0이다.

(1)을 p → q라고 할 때 P = {1, 2, 3, 6}, Q = {1, 2, 3, 4, 6, 12}
P ⊂ Q이므로 p → q는 참

(2) 반례를 이용해 보죠. xy = 1일 때,  x = -1, y = -1이면 x < 0, y < 0이에요.
이 반례를 통해서 명제가 거짓이라는 걸 알 수 있어요.

모든, 어떤이 들어있는 명제의 참, 거짓

모든, 어떤이 들어있는 명제에서 참, 거짓을 확인하는 방법이에요.

"모든", "임의의"라는 단어가 들어간 명제에서는 그 식이 성립하지 않는 x가 하나도 없어야 참이에요. 즉 식이 성립하지 않는 x가 하나라도 있으면 거짓이라는 거죠. 이때 성립하지않는 x가 바로 반례에요.

"모든 실수 x에 대하여 x2 = 1이다."라는 명제가 있어요. x = 2이면 이 x2 = 1이라는 식이 성립하지 않죠. 따라서 이 명제는 거짓이고 이때 x = 2가 반례가 되는 거예요.

"어떤"이 들어가 있는 명제는 식을 만족하는 x가 하나라도 있으면 참이에요. 모든 x에 대해서 성립할 필요가 없어요.

"어떤 실수 x에 대하여 x2 = 1이다."라는 명제에서 x = 1이면 x2 = 1이 성립하죠. 따라서 이 명제는 참인 명제에요.

모든, 임의의 → 반례가 있으면 거짓
어떤 → 하나라도 성립하면 참

함께 보면 좋은 글

명제와 조건, 진리집합, 조건의 부정
명제의 역, 이, 대우, 삼단논법
필요조건, 충분조건, 필요충분조건
[중등수학/중2 수학] - 명제, 명제의 가정과 결론, 명제의 역

정리해볼까요

명제의 참, 거짓

  • 진리집합을 이용, p → q일 때, 조건 p의 진리집합을 P, 조건 q의 진리집합을 Q라고 하면
    P ⊂ Q이면 참
    P 부분집합이 아님 Q이면 거짓
  • 반례가 하나라도 있으면 거짓
 
그리드형

명제와 조건은 참 어려운 단원이에요. 개념이 중요한데다 실제 참, 거짓을 증명해야 하는 경우가 많거든요.

용어의 정의, 기호가 나타내는 것들을 하나도 놓치지 않고 생각해야 하는 단원이에요. 큰 게 아니라 자잘한 실수때문에 틀리는 문제가 많아서 좀 짜증나기도 하죠. 지금까지 공부했던 용어들과 기호들에 대해서 복습하는 단원이라고 생각하세요.

명제와 조건

명제는 참, 거짓을 판단할 수 있는 문장이나 식을 말해요.

"2는 소수다"라는 문장이 있어요. 이 문장은 참이죠? 그래서 명제에요. "3은 짝수다." 이 문장은 거짓이죠? 거짓이니까 명제에요. 명제는 참, 거짓을 판단할 수 있는 문장이므로 거짓인 문장도 명제에요. 거짓이면 명제가 아니라고 생각하는 경우가 많은데, 주의하세요.

"수학은 어렵다." 이 문장은 어떤가요? 학생 대부분은 수학이 어렵다고 생각할 거예요. 그런데 또 다른 학생들은 수학이 쉽다고 하는 학생도 있겠죠? 사람에 따라서 참, 거짓이 달라져요. 참, 거짓을 판단할 수 없죠. 따라서 이 문장은 명제가 아니에요.

명제, 참인 명제, 거짓인 명제

조건은 미지수를 포함하고 있어서 그 미지수의 값에 따라 참, 거짓이 판별되는 문장이나 식을 말해요.

"(x - 1)(x - 2) = 0"이라는 식은 x = 1, 2일 때는 참이지만, x = 3, 4, 5, … 이면 거짓이죠? x에 따라서 참, 거짓이 바뀌니까 이 문장은 조건이에요. 보통 조건에서 미지수로 x를 사용하니까 조건을 p(x), q(x), … 등으로 표시하는데, 간단히 p, q, … 로도 나타내요.

진리집합

조건은 미지수에 따라서 참, 거짓이 달라진다고 했어요. 이때 조건이 참이 되게 하는 미지수의 집합을 진리집합이라고 해요. 진리집합은 알파벳 대문자로 나타내는데, 조건 p의 진리집합은 P, 조건 q의 진리집합은 Q라고 써요. 특별한 언급이 없으면 전체집합 U는 실수 전체의 집합이라고 생각하면 돼요.

"(x - 1)(x - 2) = 0"이라는 조건에서 진리집합 P = {1, 2} 겠죠?

두 조건을 하나로 합쳐서 사용하는 경우도 있어요. p라는 조건과 q라는 조건을 합칠 때 "p 이고 q"라는 조건을 만들었다면 진리집합은 P ∩ Q가 돼요. p와 q라는 두 조건을 모두 만족하는 미지수여야 하니까요. "p 또는 q"라는 조건을 만들었다면 진리집합은 P ∪ Q가 돼요. p, q 중 하나만 만족해도 되거든요.

조건의 부정

조건의 부정은 말 그대로 조건을 반대로 얘기하면 돼요. 조건 p의 부정은 ~p라고 쓰고, not p라고 읽어요. 조건 q의 부정은 ~q라고 쓰고 not q라고 읽죠.

그럼 ~p의 부정은 뭘까요? ~(~p) = p에요. 진리집합을 생각해보세요. 부정은 진리집합에서 여집합이에요. (PC)C = P니까 ~(~p) = p가 되는 거예요.

(조건)과 (조건의 부정)은 서로 부정인 관계에요.

조건의 부정을 몇 가지 해볼까요?

조건의 부정
조건 조건의 부정 비고
=  
> 부등식의 표현
< 부등식의 표현
짝수 홀수 자연수일 때
양수 0과 음수  
유리수 무리수  
어떤 모든 "어떤 x에 대하여………" / "모든 x에 대하여"
이고 (and) 또는 (or) "p 이고 q" / "~p 또는 ~q"
적어도 하나는 맞다 모두 ~ 아니다.  
x = y = z x ≠ y 또는 y ≠ z 또는 z ≠ x x = y이고, y = z이고, z = x라는 세 조건의 결합

다음 조건의 부정을 말하여라.
(1) x = 1 또는 x = 2
(2) 1 < x ≤ 2
(3) 모든 실수 x에 대하여 (x - 1)2 ≥ 0이다.

"또는"의 부정은 "이고"에요.

(1)은 또는 이니까 "이고"로 바뀌어야겠죠? 그리고 =는 ≠로 바꾸고요.
"x = 1 또는 x = 2"의 부정은 "x ≠ 1 이고 x ≠ 2"가 되겠네요.

(2)는 1 < x 이고, x ≤ 2라는 두 개의 조건으로 나눌 수 있어요. 가운데가 "이고"니까 "또는"으로 바꿔야 하고, <는 ≥로, ≤는 >로 바꿔야 겠네요.
"1 < x ≤ 2"의 부정은 "1 ≥ x 또는 x > 2"

(3)은 모든이 있어요. "모든"의 부정은 "어떤"이에요. ≥의 부정은 <고요.
"모든 실수 x에 대하여 (x - 1)2 ≥ 0이다."의 부정은 "어떤 실수 x에 대하여 (x - 1)2 < 0이다."

부정하지 않는 것들

조건에서 부정을 할 때, 절대로 부정하면 안 되는 게 있어요. 바로 "수의 체계"에요.

"유리수 x에 대하여 x > 2이다"를 부정하면 "무리수 x에 대하여 x ≤ 2이다."가 아니라는 거예요. x가 포함되는 수의 체계는 부정하면 안 돼요. "유리수 x에 대하여 x ≤ 2 이다."가 제대로 된 부정이에요.

"양수 x에 대하여 …"에서 양수를 부정해서 "음수 또는 0 x에 대하여" 가 아니라 그대로 "양수 x에 대하여 …"에요.

"x가 무리수이다"을 부정하면 "x가 유리수이다"가 돼요." 위에서 수의 체계는 부정하지 않는다고 했는데, 여기서는 부정을 했어요.

위에서 수의 체계는 조건이 아니라 전제라서 부정하면 안 되고, 아래에 있는 문장에서는 수의 체계가 조건이니까 부정할 수 있는 거예요. 이 차이를 잘 구별하세요.

함께 보면 좋은 글

[중등수학/중2 수학] - 명제, 명제의 가정과 결론, 명제의 역
명제의 참, 거짓, 반례
명제의 역, 이, 대우, 삼단논법
필요조건, 충분조건, 필요충분조건

정리해볼까요

명제와 조건

  • 명제: 참, 거짓을 판단할 수 있는 문장이나 식
  • 조건: 미지수에 따라 참, 거짓이 달라지는 문장이나 식, p, q
  • 진리집합: 조건이 참이 되게 하는 미지수를 원소로 하는 집합
  • 조건의 p의 부정: ~p
<<  수학 1 목차  >>
 
그리드형

유한집합은 원소의 개수를 셀 수 있는 집합이에요. 따라서 원소의 개수와 관련된 문제는 당연히 유한집합이에요. 물론 원소의 개수가 0개인 공집합 공집합도 포함되고요.

유한집합의 원소의 개수를 구할 때는 무작정 구하는 게 아니라 그와 관련된 다른 집합의 원소의 개수를 알려줘요. 그러니까 이 글에서는 유한집합의 원소의 개수 사이에는 어떤 관계가 있는지 알아볼 거예요. 이런 관계를 통해서 원소의 개수를 구하는 겁니다.

집합에서 이해를 돕는 가장 좋은 방법은 벤다이어그램을 그리는 방법이니까 각 설명 과정에 나오는 벤다이어그램을 잘 보세요.

유한집합의 원소의 개수

교집합과 합집합의 원소의 개수

집합 A의 원소의 개수는 n(A)라는 기호로 나타내는 거 알고 있죠? 집합의 원소의 개수

두 집합 A, B와 교집합, 합집합의 원소의 개수에 어떤 관계가 있는지 알아보죠.

일단 그림에서 알 수 있는 집합의 원소의 개수를 구해볼까요?
n(A) = x + y
n(B) = y + z
n(A ∩ B) = y
n(A ∪ B) = x + y + z

위에 두 개를 더하고 아래 두 개를 더해보죠.

n(A) + n(B) = n(A ∩ B) + n(A ∪ B) = x + 2y + z

가운데 있는 n(A ∪ B)나 n(A ∩ B)를 이항해보세요.

n(A ∪ B) = n(A) + n(B) - n(A ∩ B)
n(A ∩ B) = n(A) + n(B) - n(A ∪ B)

두 집합의 원소의 개수와 합집합, 교집합의 원소의 개수와의 관계를 알 수 있겠죠?

이번에는 아래 그림처럼 A, B, C의 세 집합이 있을 때에요.

나머지는 위와 같으니까 넘어가고 n(A ∪ B ∪ C)를 구해보죠. A ∪ B ∪ C = (A ∪ B) ∪ C라고 생각할 수 있겠죠? 이렇게 나눠서 해봐요.
n(A ∪ B ∪ C) = n(A ∪ B) + n(C) - n((A ∪ B) ∩ C)
= {n(A) + n(B) - n(A ∩ B)} + n(C) - n((A ∩ C) ∪ (B ∩ C))
= n(A) + n(B) - n(A ∩ B) + n(C) - {n(A ∩ C) + n(B ∩ C) - n((A ∩ C) ∩ (B ∩ C))
= n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + n(A ∩ B ∩ C)

집합의 연산법칙을 이용해서 집합의 모양을 바꾸고 거기에 위에서 봤던 합집합과 교집합의 원소의 개수를 넣어봤더니 마지막 줄처럼 나왔어요.

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + n(A ∩ B ∩ C)

세 집합의 합집합의 원소의 개수는 각각의 집합의 원소의 개수를 다 더하고, 두 개씩의 교집합의 원소의 개수를 빼고, 세 개의 교집합의 원소의 개수를 더하는 거예요. 복잡하지만 금방 외울 수 있을 거예요.

여집합과 차집합의 원소의 개수

이번에는 좀 쉬운 거 하죠. 여집합의 원소의 개수에요.

n(AC) = n(U) - n(A)

A - B = A - (A ∩ B) = (A ∪ B) - B로 나타낼 수 있으니까 그 상태 그대로 원소의 개수로 바꿔주면 돼요.

n(A - B) = n(A) - n(A ∩ B) = n(A ∪ B) - n(B)

하나는 교집합을 하나는 합집합을 이용하는 거니까 차이를 잘 보세요.

n(A) = 10, n(B) = 8, n(A ∪ B) = 15일 때, 다음을 구하여라.
(1) n(A ∩ B)
(2) n(A - B)
(3) n(B - A)

(1)에서 n(A ∩ B) = n(A) + n(B) - n(A ∪ B) = 10 + 8 - 15 = 3

(2) n(A - B) = n(A ∪ B) - n(B) = 15 - 8 = 7
다른 방법으로 n(A - B) = n(A) - n(A ∩ B) = 10 - 3 = 7

(3) n(B - A) = n(A ∪ B) - n(A) = 15 - 10 = 5
다른 방법으로 n(B - A) = n(B) - n(A ∩ B) = 8 - 3 = 5

선영이네 반은 총 30명의 학생이 있다. 이 중에 지난 토요일에 무한도전을 본 학생은 17명, 스타킹을 본 학생은 12명, 둘 다 본 학생은 5명일 때, 둘 중 아무 프로그램도 보지 않은 학생은 몇 명인가?

총 30명이라고 했으니까 n(U) = 30
무한도전을 본 학생을 집합 A라고 하면 n(A) = 17
스타킹을 본 학생을 집합 B라고 하면 n(B) = 12
둘 다 본 학생은 n(A ∩ B) = 5
아무 프로그램도 안 본 학생은 (A ∪ B)C이므로 학생 수는 n((A ∪ B)C) = n(U) - n(A ∪ B)

n(A ∪ B) = n(A) + n(B) - n(A ∩ B) = 17 + 12 - 5 = 24

n((A ∪ B)C) = n(U) - n(A ∪ B) = 30 - 24 = 6(명)

함께 보면 좋은 글

부분집합, 부분집합의 개수 구하기
집합의 연산법칙 1 - 교환법칙, 결합법칙, 분배법칙
집합의 연산법칙 2 - 드모르간의 법칙, 차집합의 성질

정리해볼까요

유한집합 원소의 개수

  • n(A ∪ B) = n(A) + n(B) - n(A ∩ B)
    n(A ∩ B) = n(A) + n(B) - n(A ∪ B)
  • n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + n(A ∩ B ∩ C)
  • n(AC) = n(U) - n(A)
  • n(A - B) = n(A) - n(A ∩ B) = n(A ∪ B) - n(B)
 
그리드형

집합의 연산법칙 두 번째예요.

여기서는 집합에서 가장 많이 사용하는 드모르간의 법칙차집합의 성질을 공부할 거예요. 이 두 가지는 벤다이어그램을 그려서 확인해보세요.

그 외에 집합의 연산에서 자주 사용하는 집합의 성질도 알아볼 건데, 이건 각 집합에서 사용하는 개념을 잘 생각해보면 이해할 수 있을 거예요. 혹시 이해하기 어렵다면 마찬가지로 벤다이어그램을 그려서 확인해볼 수도 있어요.

집합의 연산은 식이 되게 복잡하고 길어 보이지만 연산 법칙과 성질만 잘 알면 풀 수 있어요. 겁먹지 마세요.

드모르간의 법칙

처음 듣는 이름인데요. 집합에서 계속 나오는 법칙이에요. 공식처럼 외워야 합니다.

드모르간의 법칙
드모르간의 법칙 - 벤다이어그램
(A ∪ B)C = AC ∩ BC

여집합 기호 C가 마치 지수법칙처럼 각 집합에 적용되어 AC, BC가 되었고, 괄호 안에 있던 연산이 반대로(∩ → ∪, ∪ → ∩) 바뀌었어요.

집합의 연산에서 매우 중요한 법칙이에요. 꼭 벤다이어그램으로 그려서 직접 확인해보세요.

차집합의 성질

차집합 A - B는 A에는 속하지만 B에는 속하지 않는 원소들의 집합이에요. A - B = {x|x ∈ A이고 x B}

전체집합, 여집합, 차집합

이걸 연산에서 교집합과 여집합의 조합으로 바꿀 수 있어요. 벤다이어그램을 그려서 확인해보세요.

A - B = A ∩ BC
차집합

차집합에서 앞에 있는 집합은 그대로, 빼기(-) → ∩으로, 뒤에 있는 집합은 여집합(C)으로 바뀌었어요.

B - A는 뭘까요? B는 그대로, 빼기(-)는 ∩으로, A는 여집합(AC)으로 바꿔요. B - A = B ∩ AC

집합의 연산에서 자주 사용하는 집합의 성질

집합의 연산에서 법칙은 아니지만 자주 사용하는 성질들이 있어요. 개수가 많아서 어려울 것처럼 보이지만 의미를 잘 생각해보면 이해가 될 거예요. 아니면 벤다이어그램을 그려서 확인해보세요. 굳이 외울 필요는 없지만 연산 과정에서 보면 이해할 수 있어야 해요.

교집합과 합집합에 관련된 성질이에요. 교집합과 합집합

A ∩ A = A, A ∪ A = A
(A ∩ B) ⊂ A ⊂ (A ∪ B)
A ∩ 공집합 = 공집합, A ∪ 공집합 = A
A ∩ U = A, A ∪ U = U

합집합과 교집합에 관련된 성질보다 더 많이 사용하는 건 여집합과 관련된 성질이에요.

A ∩ AC = , A ∪ AC = U
(AC)C = A, 공집합C = U, UC =

여집합은 쉽게 말해서 "아닌 것"이죠? AC는 A에 포함되지 않은 원소들로 이루어진 집합으로 A의 원소를 제외한 다른 원소는 모두 들어있어요. 그래서 A와 AC 사이에는 공통된 게 없으니까 교집합은 공집합이고 합집합은 U에요. (AC)C은 이중부정이 되어 원래와 같아지는 거예요. 전체집합 U의 원소가 아닌 것은 없으니까 UC = 공집합이 되죠.

이번에는 두 집합 사이의 포함 관계를 알아볼 수 있는 성질이에요.

A ∩ B = A ↔ A ⊂ B
A ∪ B = B ↔ A ⊂ B
A ⊂ B이고, B ⊂ A ↔ A = B

다음을 간단히 하여라. (단, 전체집합 U에 대하여 A ⊂ U, B ⊂ U)
{(AC ∪ BC) ∩ (A ∪ BC)} ∩ A

상당히 길죠? 이걸 벤다이어그램으로 구할 수도 있어요. 하지만 집합의 연산법칙을 이용하면 다항식 계산하듯이 정리할 수 있어요.

{(AC ∪ BC) ∩ (A ∪ BC)} ∩ A
= {(AC ∩ A) ∪ BC)} ∩ A            (∵ 분배법칙)
= ( ∪ BC) ∩ A                       (∵ AC ∩ A = )
= BC ∩ A                                  (∵  ∪ BC = BC)
= A ∩ BC                                  (∵ 교환법칙)
= A - B                                     (∵ A ∩ BC = A - B)

첫 번째 줄에 보면 ( ) 안에는 ∪ BC이 양쪽 모두에 들어있어요. 이걸 분배법칙으로 묶어서 2번째 줄이 되었어요. 마지막 줄에서는 차집합의 성질을 이용했네요.

되게 길어서 복잡해 보이지만 성질을 잘 이용하면 풀 수 있어요. 겁먹지 말고 차근차근 해보세요.

함께 보면 좋은 글

집합의 연산법칙 1 - 교환법칙, 결합법칙, 분배법칙
부분집합, 부분집합의 개수 구하기
유한집합의 원소의 개수
교집합과 합집합
전체집합, 여집합, 차집합

정리해볼까요

집합의 연산법칙

  • 드모르간의 법칙
    (A ∪ B)C = AC ∩ BC
    (A ∩ B)C = AC ∪ BC
  • 차집합: A - B = A ∩ BC
 
그리드형

집합의 연산법칙은 쉬우면서도 어려운 내용이에요. 연산법칙이라고 부르는 교환법칙, 결합법칙, 분배법칙은 숫자와 식의 계산에서 이미 다 들어본 용어들이에요. 그래서 집합에 적용해도 이해하기에 어렵지는 않을 거예요.

하지만 실제 문제에서 집합의 연산법칙들을 이용해서 계산하기는 어려울 거예요. 기호도 비슷하고 숫자가 아니라 알파벳으로 되어 있으니까요. 하지만 이미 알고 있는 법칙이고 수와 식에서 계산을 해봤다는 자신감을 느낀다면 충분히 해낼 수 있을 거로 생각합니다.

집합의 연산

집합의 연산에 대해서 정리해보죠. 교집합과 합집합, 전체집합, 여집합, 차집합

교집합은 A와 B 양쪽 모두에 속한 원소들로 이루어진 집합이에요. A ∩ B = {x|x ∈ A이고 x ∈ B}
합집합은 A에 속하거나 B에 속하거나 A, B 양쪽 모두에 속하는 원소들로 이루어진 집합이고요. A ∪ B = {x|x ∈ A 또는 x ∈ B}
차집합은 A에 속하지만 B에는 속하지 않는 원소들의 집합이죠. A - B = {x|x ∈ A이고 x 집합의 원소 B}
여집합은 전체집합 U에 속하는 원소 중 A에 속하지 않는 원소들로 이루어진 집합이에요. AC = {x|x ∈ U이고 x 원소 A}

집합의 연산법칙

숫자를 더하고 빼고 곱하고 나누는 걸 사칙연산이라고 하지요? 집합도 연산을 합니다. 덧셈, 뺄셈이 아니고 합집합(∪), 교집합(∩), 여집합(C), 차집합(-)의 연산이요. 마치 숫자들을 계산하듯이 집합들도 식으로 풀어내는 거죠.

정수와 유리수의 덧셈, 곱셈에서 교환법칙이라는 게 성립해요. +, × 기호 양옆에 있는 숫자의 자리를 바꿔서 계산해도 값이 같은 걸 말하죠.
x + y = y + x
xy = yx

집합에서도 교환법칙이 성립해요. 단, 교집합과 합집합에서만 성립해요. 여집합과 차집합에서는 성립하지 않습니다.

집합의 연산법칙 - 교환법칙

결합법칙이라는 것도 있죠? 괄호를 쳐서 계산의 우선순위를 바꿔도 되는 거요. 집합에서도 성립합니다. 교환법칙과 마찬가지로 교집합과 합집합에서만 성립해요.

집합의 연산법칙 - 결합법칙

교환법칙, 결합법칙 말고 하나 더 있죠? 분배법칙이요.

분배법칙

위 그림에서 +, × 기호가 ∩, ∪으로 바뀐 것뿐이에요.

집합의 연산법칙 - 분배법칙

위에서 설명한 세 가지 법칙들을 잘 이해해야 해요. 다항식의 계산 보면 항이 여러 개 있는 식을 간단히 정리하는 문제가 나오죠? 고등학교에서는 집합이 그런 식으로 나와요. 집합 여러 개를 써놓고 연산법칙을 이용해서 간단하게 정리하는 문제가 나오죠.

아래 연산과정에서 사용된 연산법칙은 무엇인가?
A ∪ (B ∩ A)
= A ∪ (A ∩ B)            ∵ (1)
= (A ∪ A) ∩ (A ∪ B)   ∵ (2)
= A ∩ (A ∪ B)
= A                            ∵ A ⊂ (A ∪ B)

(1)에서는 괄호 안의 (B ∩ A)가 (A ∩ B)로 바뀌었네요. A와 B가 자리만 바꿨어요. 교환법칙이에요.

(2)에서는 괄호 밖의 A가 괄호 안의 (A ∩ B)에 각각 연산을 했네요. 분배법칙이 사용되었어요.

이어지는 집합의 연산법칙 2 - 드모르간의 법칙을 본 다음에 예제 문제를 풀어보죠.

함께 보면 좋은 글

부분집합, 부분집합의 개수 구하기
드모르간의 법칙, 집합의 연산법칙
유한집합의 원소의 개수
교집합과 합집합
전체집합, 여집합, 차집합

정리해볼까요

집합의 연산법칙

  • 교환법칙: 교집합, 합집합에서만 성립
    A ∩ B = B ∩ A
    A ∪ B = B ∪ A
    A - B ≠ B - A
  • 결합법칙: 교집합, 합집합에서만 성립
    (A ∩ B) ∩ C = A ∩ (B ∩ C)
    (A ∪ B) ∪ C = A ∪ (B ∪ C)
  • 분배법칙
    A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
    A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
<<  수학 1 목차  >>
 
그리드형

고등학교 수학 첫 시간이네요. 고등학교 수학은 중학교 수학과 비교하면 수준차가 확연히 납니다. 갑자기 어려워져요. 특히 학년이 올라갈수록 그 격차는 심해집니다.

내용 자체도 어렵고 양도 많고요. 설명도 글이나 그림보다는 식이나 기호 위주로 되어 있어서 알아보기가 힘들 겁니다. 하지만 중학교에 배운 수학 내용을 탄탄히 해온 학생이라면 충분히 공부할 수 있으니까 너무 걱정하지 마세요.

고등학교 수학은 한꺼번에 몰아서 공부하거나 벼락치기가 안되니까 매일 조금씩 공부를 하세요.

처음으로 할 내용은 집합인데, 집합은 중1 수학에서 공부했던 내용을 정리하고 복습하는 과정을 가져보죠. 자세한 설명은 중1 수학 목록에서 보세요. 부분집합부분집합의 개수를 구하는 과정을 조금 더 다뤄보도록 하겠습니다.

집합

집합에 관련된 내용은 많지만 일단 가장 기본적인 것 몇 가지만 정리해볼까요?

  • 집합: 구체적이고 객관적인 기준에 맞는 대상들의 모임. 알파벳 대문자로 표시
  • 원소: 집합을 이루는 대상 하나하나. 알파벳 소문자로 표시
    • a가 집합 A의 원소일 때, a ∈ A
    • b가 집합 A의 원소가 아닐 때, b 집합의 원소 A
  • 집합의 표현방법
    • 원소나열법: 집합에 속하는 모든 원소를 { }안에 열거하는 방법.
      A = {1, 2, 3, 4, 6, 12}
    • 조건제시법: 원소들의 공통된 성질이나 조건을 나타내는 방법.
      A = {x|x는 12의 양의 약수}
    • 벤다이어그램: 그림으로 표현
      벤다이어그램
  • 집합의 분류
    • 유한집합: 원소의 개수가 유한개여서 셀 수 있는 집합
      공집합: 원소의 개수가 0개인 집합
    • 무한집합: 원소의 개수를 셀 수 없는 집합
  • n(A): 집합 A의 원소의 개수

부분집합

중학교 1학년 때, 집합의 포함관계 - 부분집합, 진부분집합과 부분집합의 성질에서 했던 내용을 정리해보죠.

두 집합 A, B에서 집합 A의 모든 원소가 집합 B에 포함될 때, A를 B의 부분집합이라고 하고 기호로 A ⊂ B라고 나타내요. 1이 모든 수의 약수인 것처럼 공집합 공집합는 모든 집합의 부분집합이죠. 모든 수가 자기 자신을 약수로 갖는 것처럼 집합에서도 자기 자신을 부분집합으로 가져요.

임의의 원소 a에 대하여, a ∈ A일 때 a ∈ B이면 A ⊂ B
공집합 ⊂ A, A ⊂ A
A ⊂ B, B ⊂ C ↔ A ⊂ B ⊂ C ↔ A ⊂ C

진부분집합은 부분집합 중에서 자기 자신을 제외한 부분집합을 말해요. 자기 자신은 부분이라고 할 수 없잖아요. 기호로 나타내면 A ⊂ B이고 A ≠ B일 때, A를 B의 진부분집합이라고 합니다.

두 집합 A와 B가 서로 같은 지도 부분집합을 이용해서 알 수 있어요. A ⊂ B이고 B ⊂ A이면 A와 B는 서로 같은 집합이에요. A의 모든 원소가 B에 들어있고, B의 모든 원소가 A에 들어있으니까 서로 같은 거지요. 숫자에서와 마찬가지로 등호(=)를 써서 A = B라고 표시합니다. A ⊂ B이고 B ⊂ A ↔ A = B

부분집합의 개수 구하기

이것도 중1 때 했던 내용이에요. 부분집합의 개수 구하기, 특정한 원소를 포함하는 부분집합의 개수 구하기에 보면 왜 이런 방법으로 구하는지 설명이 되어 있어요. 기억이 나지 않는다면 한 번 보고 오세요.

n(A) = n일 때
집합 A의 부분집합의 개수 = 2n
집합 A의 진부분집합의 개수 = 2n - 1
특정원소 k개를 포함하지 않는 부분집합의 개수 = 2n - k
특정원소 k개를 포함하는 부분집합의 개수 = 2n - k
특정원소 k개 중 적어도 한 개를 포함하는 부분집합의 개수 = 2n - 2n - k

진부분집합은 자기 자신을 제외한 부분집합이니까 전체 부분집합의 개수에서 1을 빼서 구해요.

특정 원소 k개를 포함하지 않는 부분집합은 애초부터 그 원소를 포함하지 않은 집합으로 생각하면 됩니다. 애초부터 원소에 포함되지 않았으면 부분집합에도 포함되지 않으니까요. 또 특정 원소 k개를 포함하는 부분집합은 특정 원소 k개를 포함하지 않는 부분집합에 그 원소들을 넣어주는 것으로 생각하면 쉬워요. 따라서 둘은 개수가 서로 같은 거예요.

마지막에 있는 게 처음으로 나오는 건데요. 적어도 한 개가 들어있는 것의 개수를 바로 구하기 어려우니까 반대로 생각해봤어요. 적어도 한 개를 포함하는 것의 반대는 하나도 들어있지 않은 거잖아요. 그래서 전체에서 한 개도 들어있지 않는 부분집합의 개수를 빼서 구하는 거죠. 하나도 들어있지 않는 부분집합의 개수는 (특정원소 k개를 포함하지 않는 부분집합의 개수)에요.
(특정 원소 k 개중 적어도 하나를 포함하는 부분집합의 개수)
= (전체 부분집합의 개수) - (특정 원소 k개를 포함하지 않는 부분집합의 개수)

집합 A = {1, 2, 3, 4, 5}일 때 다음을 구하여라.
(1) 2, 4를 포함하지 않는 부분집합의 개수
(2) 2, 4를 반드시 포함하는 부분집합의 개수
(3) 2, 4중 적어도 하나를 포함하는 부분집합의 개수

(1) 2, 4를 포함하지 않는 부분집합의 개수를 구하라고 했는데, 애초부터 A라는 집합이 2, 4를 포함하지 않았다고 생각해보죠. 이 집합을 B라고 한다면 B = {1, 3, 5}에요. (B의 부분집합의 개수) = (2, 4를 포함하지 않는 부분집합의 개수)이므로 23 = 8이에요.

공식을 이용해서 바로 구해보면 n(A) = 5이고, 2, 4라는 두 개의 원소를 포함하지 않으니까 25 - 2 = 23 = 8(개)이에요. 공식으로 바로 구해도 같네요.

(2)번은 (1)에서 구한 B의 부분집합에는 2, 4가 들어있지 않으니까 거기에 2, 4를 모두 넣어준다고 생각하면 돼요. 따라서 개수가 같죠. 8개에요.

(3)번 2, 4중 적어도 하나를 포함한다는 건 2를 포함하거나 4를 포함하거나 2, 4 둘 다를 포함하는 거예요. 전체 부분집합의 개수에서 2, 4를 둘 다 포함하지 않는 부분집합의 개수를 빼서 구해요. 25 - 25 - 2 = 32 - 8 = 24(개)

두 집합 A = {x|x는 5 이하의 자연수}, B = {1, 3, 5}일 때 B ⊂ X ⊂ A를 만족하는 X의 개수를 구하여라.

문제가 좀 복잡하네요. A = {1, 2, 3, 4, 5}, B = {1, 3, 5}

B ⊂ X니까 X는 B의 모든 원소를 포함하고 있어요. 그리고 X ⊂ A죠. 정리해보면 X는 B의 원소인 {1, 3, 5}를 포함하는 A의 부분집합이에요.

특정한 원소를 포함하는 부분집합의 개수를 구하는 공식을 사용하면 되겠네요.

25 - 3 = 4

X를 직접 구하는 게 아니라 개수만 구하는 거니까 답은 4개입니다.

함께 보면 좋은 글

집합의 연산법칙 1, 교환법칙, 결합법칙, 분배법칙
드모르간의 법칙, 집합의 연산법칙
유한집합의 원소의 개수
[중등수학/중1 수학] - 부분집합 구하기, 부분집합의 개수 구하기
[중등수학/중1 수학] - 특정한 원소를 포함하는 부분집합의 개수 구하기

정리해볼까요?

부분집합의 개수: n(A) = n일 때

  • 집합 A의 부분집합의 개수 = 2n
  • 집합 A의 진부분집합의 개수 = 2n - 1
  • 특정원소 k개를 포함하지 않는 부분집합의 개수 = 2n - k
  • 특정원소 k개를 포함하는 부분집합의 개수 = 2n - k
  • 특정원소 k개 중 적어도 한 개를 포함하는 부분집합의 개수 = 2n - 2n - k
 
그리드형

2013년 이전 고등학교 1학년 수학목차입니다. (2012년, 2011년, 2010, …… 등에도 해당)

2014년 이후 고등학교 1학년은 2014년 고1 수학 목록을 참고하세요.

  1. 집합과 명제
  2. 수 체계
  3. 식의 계산
  4. 방정식과 부등식

  1. 도형의 방정식
  2. 함수
  3. 삼각함수
  4. 순열과 조합
그리드형

조금은 생소한 단원이에요. 명제라는 단원인데요.

복잡한 계산이 나오는 게 아니라 얼핏 보면 쉬워보일 수 있는데, 개념이 중요해서 생각을 많이 해야 하는 단원이에요.

생각할 거리가 많으니까 머리를 잘 굴려야 해요. 그냥 단순히 문장만 보고 식만 보고 해결할 수 없으니까 글자 하나하나에 주의해서 보세요.

1학년 때 배웠던 집합과 비슷한 부분이 많아요. 또 도형 단원에서 배웠던 여러 가지 용어들에 대한 뜻도 정확히 알면 문제 푸는 데 도움이 되니까 한 번쯤 정리해보세요.

명제

명제는 참, 거짓을 분명하게 판단할 수 있는 문장이나 식을 말해요. 집합에서 제일 중요한 건 집합의 조건이 아주 명확하고 객관적이어야 한다고 했어요. 명제에서도 아주 명확하고 객관적으로 참 거짓을 판단할 수 있어야 해요.

보기. "소녀시대는 예쁘다."는 문장이 있어요. 소녀시대는 예쁜가요? 대부분의 사람은 소녀시대를 예쁘다고 생각할 거예요. 그럼 참인가요? 그런데 어떤 사람들은 별로라고 생각할 수도 있잖아요. 이런 사람들은 이 문장이 거짓이라고 생각할 거예요. 그래서 이건 명제라고 할 수 없어요.

"소녀시대 멤버는 9명이다." 이 문장은요. 누가봐도 소녀시대 멤버는 9명이잖아요. 그래서 이 문장은 참이죠. 참이라고 결론 내릴 수 있으니까 이 문장은 명제라고 할 수 있어요.

"설리는 소녀시대 멤버이다." 이 문장은 어떨까요? 설리는 소녀시대의 멤버가 아니라 f(x)의 멤버잖아요. 틀린 문장이죠? 거짓이라는 얘기에요. 거짓이라고 판단할 수 있으니까 이 문장도 명제에요.

그 문장이 참인지 거짓인지는 중요하지 않아요. 참/거짓인지 판단할 수 있으면 명제에요. 많은 학생이 거짓이면 명제가 아니라고 착각하는데, 그런 실수는 하지 마세요.

명제, 참인 명제, 거짓인 명제

명제가 항상 옳으면 참인 명제라고 해요. 만약에 명제가 항상 참이 아니고 어떤 경우에 하나라도 옳지 않으면 거짓인 명제라고 합니다.

"2의 배수는 짝수이다."라는 문장이 있어요. 이건 항상 옳죠? 그래서 참인 명제에요.

"모든 소수는 홀수이다."라는 문장이 있어요. 소수는 2, 3, 5, …등이 있는데, 2는 짝수이고 나머지는 모두 홀수에요. 모두 홀수라고 했는데, 2는 짝수잖아요. 엄청나게 많은 수의 소수가 홀수인데, 2 하나 때문에 이 문장은 옳지 않은 문장이 되어버렸어요. 따라서 거짓인 명제에요. 명제가 거짓인지 아닌지를 얘기할 때는 그걸 만족하지 않는 딱 하나만 찾으세요.

다음 문장에서 명제를 찾고, 참/거짓은 판별하시오.
(1) 6은 3의 배수이다
(2) 정사각형 네 변의 길이는 같다
(3) 두 삼각형의 넓이가 같으면 서로 합동이다.
(4) 100은 큰 수이다.
(5) x + 3 = 2이다.

(1)번 6은 3의 배수이다.
6은 3의 배수가 맞죠? 참인 명제에요.

(2)번 정사각형의 네 변의 길이는 같다.

정다각형 중에서 네 변의 길이가 모두 같고, 네 각의 크기가 모두 같은 사각형을 정사각형이라고 정의하죠? 정사각형의 정의에 따르면 네 변의 길이는 모두 같으니까 이 문장도 참인 명제네요.

(3)번 두 삼각형의 넓이가 같으면 서로 합동이다.
가로가 4cm이고 세로가 6cm인 삼각형과 가로가 3cm이고 세로가 8cm인 삼각형은 넓이가 같아요. 하지만 서로 포개지지 않으니까 합동은 아니잖아요. 따라서 이 문장은 거짓이에요. 거짓이라고 판별할 수 있으니까 명제가 맞네요. 거짓인 명제입니다.

(4)번 100은 큰 수이다.
100이라는 수는 1보다는 크지만 10,000보다는 작은 수에요. 때에 따라서 사람에 따라서 크고 작고가 달라질 수 있죠? 따라서 참/거짓을 판단할 수 없어요. 명제가 아니에요.

(5)번 x + 3 = 2이다.
일차방정식이네요. 만약에 x가 1이라면 이 문장은 거짓이 돼요. 그럼 거짓인 명제일까요? 아니에요. 방정식이나 부등식처럼 x의 값에 따라서 참/거짓이 달라지는 경우에는 명제라고 할 수 없어요.

명제의 가정과 결론

"두 삼각형의 넓이가 같으면 서로 합동이다."처럼 일반적으로 명제는 "OO이면 □□이다."라고 표현해요. 여기서 OO이면을 가정, □□이다를 결론이라고 합니다.

수학은 기호로 표시해요. 가정인 OO이면을 p, 결론 □□이다를 q라고 하는데, 이걸 기호로 p → q로 표시해요.

명제

다음 명제에서 가정과 결론을 말하여라.
(1) 두 삼각형의 넓이가 같으면 서로 합동이다.
(2) 정사각형의 네 변의 길이는 같다.

명제 "OO이면 □□이다"에서 OO이면이 가정, □□이다는 결론이에요.

(1)번 두 삼각형의 넓이가 같으면 서로 합동이다.
이 명제에서 "같으면"을 기준으로 두 문장으로 되어 있어요. "두 삼각형의 넓이가 같다."와 "두 삼각형은 서로 합동이다."이죠. "두 삼각형은 넓이가 같다."는 가정, "두 삼각형은 서로 합동이다."는 결론이 되겠네요.

(2) 정사각형의 네 변의 길이는 같다.
여기에는 OO이면이 없어요. 그럼 가정이 없을까요? OO이면이 없는 명제에서는 주어나 전제에 해당하는 부분이 가정이에요. 이 문장은 "어떤 사각형은 정사각형이다."와 "이 사각형은 네 변의 길이가 같다."로 나눌 수 있어요. "어떤 사각형은 정사각형이다."는 가정, "이 사각형은 네 변의 길이가 같다."는 결론에 해당해요. 이런 명제에서 가정과 결론을 찾는 건 연습이 조금 필요합니다.

명제의 역

역이라는 건 한자로 바꾸다라는 뜻이 있어요. 명제의 역은 명제를 바꾸는 데 어떻게 바꾸느냐? 명제의 가정과 결론의 위치를 바꾸는 거예요.

명제 "OO이면 □□이다"의 가정과 결론의 위치를 바꾼 "□□이면 OO이다"가 명제의 역이 되는 거예요. 명제를 "p → q"라고 쓴다고 했으니까 명제의 역은 "q → p"가 되는 거죠.

명제의 역

어떤 명제가 이미 있고 그 명제의 가정과 결론의 위치를 바꾼 게 그 명제의 역이 되는 거예요. 어디서 갑자기 툭 튀어나오는 게 아니에요.

명제가 참이라고 해서 명제의 역이 참이 되는 건 아니에요. 마찬가지로 명제가 거짓이라고 해서 명제의 역이 거짓이 되는 것도 아니에요. 명제와 명제의 역의 참/거짓은 서로 아무런 관계가 없어요.

다음 명제의 역을 말하시오.
(1) 두 삼각형의 넓이가 같으면 서로 합동이다.
(2) 정사각형의 네 변의 길이는 같다.

위에서 명제의 가정과 결론을 알아봤죠? 자리만 그대로 바꾸면 돼요.

(1) 두 삼각형의 넓이가 같으면 서로 합동이다.
"두 삼각형의 넓이가 같다." → "두 삼각형은 서로 합동이다."라는 명제였어요.
자리를 바꾸면 "두 삼각형은 서로 합동이다." → "두 삼각형의 넓이가 같다."이므로 한 문장으로 합치면 "두 삼각형이 서로 합동이면 넓이가 같다."라는 명제의 역이 만들어져요.

(2) 정사각형의 네 변의 길이는 같다.
"어떤 사각형은 정사각형이다." → "이 사각형은 네 변의 길이가 같다."
위치를 바꾸면 "이 사각형은 네 변의 길이가 같다." → "어떤 정사각형이 있다."가 되네요. 한 문장으로 합치면 "네 변의 길이가 같은 사각형은 정사각형이다"라는 명제를 만들 수 있어요.

추가로 명제와 명제의 참/거짓을 알아볼까요?

(1)에서 명제는 거짓이었어요. 명제의 역은 참이죠? 두 삼각형이 합동이면 서로 포개어지는 거고 가로, 세로의 길이가 같으니까 넓이도 같잖아요.

(2)에서 명제는 참이었어요. 명제의 역은 거짓이에요. 네 변의 길이가 같더라도 네 각의 크기가 다를 수 있잖아요. 이걸 마름모라고 해요.

명제의 참/거짓과 명제의 역의 참/거짓은 아무런 상관이 없다는 걸 알아두세요.

함께 보면 좋은 글

수학의 정의, 정리, 증명

정리해볼까요

명제: 참, 거짓인지 분명히 판단한 수 있는 문장이나 식

  • 참인 명제: 내용이 항상 옳은 명제
  • 거짓인 명제: 내용이 옳지않은 경우가 하나라도 있는 명제
  • 명제 'p이면 q이다'에서 p를 가정, q를 결론. p → q
  • 명제의 역: 명제 'p → q'에서 p와 q의 위치를 바꾼 명제. q → p
 
그리드형

집합의 종류가 참 많죠? 이번에는 여집합차집합입니다.

여집합과 차집합은 교집합, 합집합과 대비되는 개념이에요. 그렇다고 완전히 반대되는 것도 아니고요. 차집합의 "차"가 일반적인 사칙연산의 "빼기"와 다르니 차이를 잘 구별하셔야 해요.

여집합

여집합을 공부하기 전에 전체집합에 관해 얘기해보죠.

전체집합은 어떤 집합이 주어졌을 때 모든 대상을 포함하는 집합이에요. 조금 어렵나요? 그냥 말 그대로 주어진 전부를 하나의 집합이라고 생각하면 쉬워요. 주어진 집합은 전체집합의 부분집합이죠.

일반적으로 전체집합은 Universal의 첫 글자를 따서 U라고 합니다. 합집합 기호 ∪와 혼동하지 마세요.

전체집합의 부분집합인 A에 대하여 집합 U의 원소 중 A에 속하지 않는 원소로 이루어진 집합을 여집합이라고 해요. 쉽게 말하면 A에 속하지 않은 원소들로 이루어진 집합이죠. 더 쉽게 얘기하면 A가 아닌 것들의 집합이고요.

여집합을 나타내는 기호는 Complementary의 첫 글자를 따서 C로 표시해요. 대신 그냥 C가 아니라 마치 지수를 나타내는 것처럼 집합 기호의 오른쪽 위에 작은 글씨로 나타내죠. A의 여집합은 기호로 Ac라고 표시해요.

U = {1, 2, 3, 4, 5}이고 A = {1, 2, 3}이라면 A의 여집합은 A에 속하지 않는 4, 5로 이루어진 집합으로 Ac = {4, 5}에요. A의 원소가 아니라고 해서 6, 7, 8 이런 숫자들을 포함한 {4, 5, 6, 7, 8}도 될까요? 정답은 아니에요. 왜냐하면 6, 7, 8이라는 숫자는 전체집합 U의 원소가 아니기 때문이죠.

A와 Ac 둘 다 전체집합 U의 부분집합이에요.

벤다이어그램으로 그리면 아래처럼 되지요. 흰색이 집합 A, 배경색이 있는 부분이 A의 여집합이고, 둘을 모두 합친 게 전체집합 U입니다.

여집합

여집합을 조건제시법으로 나타내면 Ac= {x|x ∈ U, x A}로 나타낼 수 있어요.

차집합

차집합의 정의는 집합 A에는 속하지만, 집합 B에는 속하지 않는 원소들로 이루어진 집합을 말해요. 순수하게(?) A에만 있는 원소들의 집합이죠. 바꿔말해 집합 A의 원소에서 집합 B의 원소를 제외하고 남은 원소들로 이루어진 집합이라고 표현할 수도 있죠.

차집합은 이름에서 알 수 있듯이 집합에서 다른 집합을 뺀 집합이에요. 그런데 우리가 아는 빼기가 아니랍니다.

바구니에 사과, 배, 귤이 하나씩 들어있다고 치죠. 그 바구니에서 사과와 감을 빼내면 뭐가 남을까요? 바구니에 사과는 들어있으니까 사과를 뺄 수는 있겠죠. 그런데 바구니에는 감이 없어서 감을 빼낼 수 없어요. 그러니까 그냥 넘어가죠. 그럼 바구니에는 배와 귤이 남아있겠네요.

집합에서 빼기는 원소들을 빼는 겁니다. 그런데 뺄 수가 없을 때는 그냥 넘어가는 거예요.

두 집합 A = {1, 2, 3, 4}, B = {3, 4, 5, 6}이 있어요. 집합 A에서 집합 B를 뺀다는 얘기는 A의 원소에서 B의 원소를 하나씩 지운다는 뜻이에요. 일단 A에서 3, 4를 뺍니다. 그다음 5, 6을 빼야 하는데 A에는 5, 6이 없으니까 그냥 패스…… 그럼 A에는 1, 2가 남네요.

차집합은 A - B라고 써요. 따라서 A - B = {1, 2}인 거죠. 반대로 B - A={5, 6}이군요.

차집합

위 벤다이어그램에서 A - B는 색으로 표시된 {1, 2} 부분이에요. 3, 4는 A에 들어있지만 B에도 들어있어서 순수하지(?) 않아요.

조건제시법으로 나타내면 A - B = {x|x ∈ A, x not element B}입니다.

U = {x|x는 10 이하의 자연수}, A = {x|x는 6의 약수}, B = {x|x는 9의 약수}일 때, 다음을 구하여라.
(1) Ac와 Bc
(2) A - B와 B - A

일단, 원소나열법으로 바꿔서 나타내볼까요?

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 6}, B = {1, 3, 9}

(1) 여집합은 해당 집합의 원소가 아니지만 전제집합 U에는 포함된 원소로 이루어진 집합이에요. Ac는 A의 원소는 아니지만 U에는 포함된 원소들로 이루어진 집합이죠.

Ac = {4, 5, 7, 8, 9, 10}
Bc = {2, 4, 5, 6, 7, 8, 10}

(2) 차집합 A - B는 집합 A에는 속하지만 집합 B에는 속하지 않는 원소들로 이루어진 집합이죠.

A - B = {2, 6}
B - A = {9}

정리해볼까요
  • A의 여집합: 전체집합 U의 원소 중에서 집합 A의 원소가 아닌 원소로 이루어진 집합. Ac
  • A 차집합 B: A는 포함되지만 B에는 포함되지 않는 원소들로 이루어진 집합. A - B
<<    수학 2 목차    >>
 
그리드형

교집합과 합집합

2012. 5. 14. 12:30

집합에서 여러 가지를 공부했어요. 집합, 원소, 공집합, 유한집합, 무한집합, 부분집합, 진부분집합 등이요.

이 글에서 공부할 집합은 교집합합집합이에요.

교집합과 합집합은 집합에서 가장 중요한 내용이라고 할 수 있어요. 실제 집합에서 나오는 대부분 문제가 교집합과 합집합의 형태로 된 집합에 관한 문제거든요. 주의 깊게 보세요.

교집합

두 집합 A = {1, 2, 3, 4}, B = {2, 4, 5}가 있어요.

여기에서 2는 A의 원소이니까 기호로 2 ∈ A라고 표시할 수 있겠네요. 마찬가지로 2는 B의 원소이니까 2 ∈ B로 표시할 수도 있겠죠. 그럼, 2는 A의 원소이면서 동시에 B의 원소도 됩니다. 2 ∈ A이고 2 ∈ B

4도 2와 마찬가지로 A의 원소이면서 동시에 B의 원소네요.

두 개 이상의 집합에 모두 포함된 원소들로 이루어진 집합을 교집합이라고 해요. A에도 속하고, B에도 속하는 원소들로 이루어진 집합이요.

위의 예에서는 2, 4가 A, B 양쪽에 모두 들어있으니까 이 두 원소로 이루어진 {2, 4}가 A와 B의 교집합이죠.

주의해야 할 건 양쪽에 들어있는 원소를 전부 포함하는 집합을 교집합이라고 하는 거예요. 2가 양쪽에 들어있다고 해서 {2}이라는 집합을 교집합이라고 하지 않아요. 마찬가지로 {4}라는 집합을 교집합이라고 하지도 않지요. 양쪽에 들어있는 원소가 모두 다 포함된 {2, 4}만 교집합이라고 합니다.

교집합은 기호로 ∩라고 표시해요. 그러니까 집합 A와 집합 B의 교집합은 A ∩ B로 표시하죠.

위 예에서 집합 A와 집합 B의 교집합은 A ∩ B = {2, 4}가 되겠네요. 벤다이어그램으로 그려보면 아래 그림처럼 그릴 수 있어요.

교집합

벤다이어그램에서 A와 B가 겹치는 부분이 바로 교집합입니다.

원소 x가 집합 A에 포함되고, 집합 B에도 포함되니까 기호로 표시하면 x ∈ A, x ∈ B가 되겠죠. 교집합을 조건제시법으로 나타낼 때 A ∩ B = {x|x ∈ A이고 x ∈ B}라고 합니다. 무슨 뜻인지 이해할 수 있죠?

합집합

합집합은 집합 A에 속하거나 집합 B에 속하는 모든 원소로 이루어진 집합이에요. A, B 둘 중 아무 데나 속하면 돼요. A에만 속해도 되고, B에만 속해도 되고 A와 B 양쪽 모두에 속해도 상관없어요. 기호로는 ∪로 표시합니다. 집합 A와 집합 B의 합집합은 A ∪ B로 표시하죠. 알파벳 대문자 U가 아니에요.

집합의 표현 방법을 공부할 때 원소나열법에서 중복되는 원소는 한 번만 쓰기로 했죠. {1, 2, 2, 3, 4, 4, 5}가 아니라 {1, 2, 3, 4, 5}로 말이죠.

합집합을 구할 때는 일단 두 집합의 원소를 모두 쓰는데 대신 중복되는 원소는 한 번만 써요. A = {1, 2, 3, 4}, B = {2, 4, 5}니까 A와 B의 합집합은 {1, 2, 3, 4, 5}입니다.

합집합

위 벤다이어그램에서 A와 B의 영역을 모두 합한 것이 A와 B의 합집합이에요.

합집합을 조건제시법으로 나타내면 A ∪ B = {x|x ∈ A 또는 x ∈ B}로 쓸 수 있죠.

A = {x|x는 6의 약수}, B = {x|x는 12의 약수}, C = {x|x는 10 이하의 홀수}, D = {x|x는 10 이하의 짝수}일 때, 다음을 구하여라.
(1) A ∩ B
(2) B ∪ C
(3) C ∩ D

조건제시법으로 나와 있는데 원소나열법으로 바꿔서 표시해보죠.

A = {1, 2, 3, 6}
B = {1, 2, 3, 4, 6, 12}
C = {1, 3, 5, 7, 9}
D = {2, 4, 6, 8, 10}

교집합(∩)은 양쪽 집합 모두에 포함된 원소로 이루어진 집합, 합집합(∪)은 어느 한쪽에라도 포함된 원소로 이루어진 집합이에요.

(1) A ∩ B는 A에도 속하고, B에도 속한 원소들로 이루어진 집합을 구해야겠네요.
A ∩ B = {1, 2, 3, 6}

(2) B ∪ C는 B나 C 둘 중 어느 하나에 속하거나 양쪽 모두에 속하는 원소들로 이루어진 집합이에요. 대신 중복되는 건 한 번만 쓰고요.
B ∪ C = {1, 2, 3, 4, 5, 6, 7, 9, 12}

(3) C ∩ D는 집합 C와 집합 D 양쪽 모두에 공통으로 속하는 원소들로 이루어진 집합이에요. 근데, C는 홀수의 집합이고, D는 짝수의 집합이므로 공통으로 속하는 원소가 없죠? 원소가 아무것도 없는 집합이니까 공집합이네요.
C ∩ D = {   } = 공집합 파이

정리해볼까요

두 집합 A, B에 대하여

  • 교집합: A와 B 양쪽 모두에 속하는 원소 전체로 이루어진 집합.
    A ∩ B={x|x ∈ A이고 x ∈ B}
  • 합집합: A에 속하거나 B에 속하는 원소 전체로 이루어진 집합.
    A ∪ B={x|x ∈ A 또는 x ∈ B}
<<    수학 2 목차    >>
 
그리드형

부분집합의 개수를 구하는 방법을 기억하고 있죠? 부분집합의 개수는 원소의 개수만큼 2를 거듭제곱 하는 거죠.

A = {1, 2, 3, 4, 5}이라면 25 = 32니까 부분집합의 수는 32개네요.

이제 여기서 조금 더 어려운 문제를 풀어보죠. A의 부분집합 중에서 2가 들어있지 않은 부분집합의 개수는 몇 개일까요? 반대로 2를 반드시 포함하는 부분집합의 개수는 몇 개일까요?

특정 원소를 포함하지 않는 부분집합의 개수

A = {1, 2, 3, 4, 5}일 때, 2를 포함하지 않는 부분집합을 구해보죠.

  1. 원소가 하나도 없는 공집합: 공집합 파이
  2. 원소가 한 개인 부분집합: {1}, {3}, {4}, {5}
  3. 원소가 두 개인 부분집합: {1, 3}, {1, 4}, {1, 5}, {3, 4}, {3, 5}, {4, 5}
  4. 원소가 세 개인 부분집합: {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {3, 4, 5}
  5. 원소가 네 개인 부분집합: {1, 3, 4, 5}

직접 구해봤더니 16개네요.

좀 더 쉬운 방법으로 구해볼까요? A라는 집합에 애초부터 2라는 원소가 없다고 생각해보세요. 그리고 A대신 B라고 이름 붙여볼까요? B = {1, 3, 4, 5}라는 집합이 되겠네요. 이 집합의 부분집합의 개수는 24 = 16, 총 16개네요.

처음부터 2라는 원소를 가지고 있지 않다면 당연히 그 집합의 부분집합에는 2라는 원소가 포함되지 않겠죠. 이 방법을 이용해서 A의 부분집합 중 2를 포함하지 않는 부분집합을 구하면 16개가 나와요.

그럼 A의 부분집합 중 2와 4를 포함하지 않는 부분집합의 개수도 구할 수 있겠네요. 처음부터 2, 4를 포함하고 있지 않다고 생각하면 C = {1, 3, 5}가 되고, 원소의 개수는 세 개, 23 = 8, 8개가 되겠네요.

정리해보면 특정한 원소를 포함하지 않는 부분집합의 개수는 원래 원소 개수에서 특정한 원소 개수를 뺀 만큼 2를 거듭제곱하는 겁니다.

특정 원소를 포함하는 부분집합의 개수

이번에는 반대로 반드시 2를 포함하는 부분집합의 개수를 구해볼까요?

2를 포함하는 부분집합은 2를 포함하지 않는 부분집합에서 구하면 쉬워요. 2를 포함하지 않는 부분집합을 모두 구한 다음에 거기에 2를 집어넣으면 되거든요.

위에서 직접 구해본 부분집합이 있죠. 거기에 전부 다 2를 집어넣어 볼게요.

  1. 원소가 하나도 없는 공집합: {2}
  2. 원소가 한 개인 부분집합: {1, 2}, {2, 3}, {2, 4}, {2, 5}
  3. 원소가 두 개인 부분집합: {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}
  4. 원소가 세 개인 부분집합: {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 4, 5}
  5. 원소가 네 개인 부분집합: {1, 2, 3, 4, 5}

모든 부분집합이 2를 포함하고 있어서 원소의 개수가 한 개씩 늘었어요. 부분집합의 개수는 총 16개고요.

2를 포함하는 부분집합은 2를 포함하지 않는 부분집합에 원소 2를 집어넣어서 찾았어요. 그렇다면 그 개수는 몇 개일까요? 2를 포함하는 부분집합의 개수와 2를 포함하지 않는 부분집합의 개수는 같아요.

그래서 2를 포함하는 부분집합의 개수는 2를 포함하지 않는 부분집합의 개수를 구하는 것과 똑같은 방법으로 구합니다.

24 = 16 개입니다.

부분집합의 개수 구하기

n(A) = n일 때
집합 A의 부분집합의 개수 = 2n
집합 A의 진부분집합의 개수 = 2n - 1
특정원소 k개를 포함하지 않는 부분집합의 개수 = 2n - k
특정원소 k개를 포함하는 부분집합의 개수 = 2n - k
특정원소 k개 중 적어도 한 개를 포함하는 부분집합의 개수 = 2n - 2n - k

진부분집합은 자기 자신을 제외한 부분집합이니까 전체 부분집합의 개수에서 1을 빼서 구해요.

특정 원소 k개를 포함하지 않는 부분집합은 애초부터 그 원소를 포함하지 않은 집합으로 생각하면 됩니다. 애초부터 원소에 포함되지 않았으면 부분집합에도 포함되지 않으니까요. 또 특정 원소 k개를 포함하는 부분집합은 특정 원소 k개를 포함하지 않는 부분집합에 그 원소들을 넣어주는 것으로 생각하면 쉬워요. 따라서 둘은 개수가 서로 같은 거예요.

마지막에 있는 게 처음으로 나오는 건데요. 적어도 한 개가 들어있는 것의 개수를 바로 구하기 어려우니까 반대로 생각해봤어요. 적어도 한 개를 포함하는 것의 반대는 하나도 들어있지 않은 거잖아요. 그래서 전체에서 한 개도 들어있지 않는 부분집합의 개수를 빼서 구하는 거죠. 하나도 들어있지 않는 부분집합의 개수는 (특정원소 k개를 포함하지 않는 부분집합의 개수)에요.
(특정 원소 k 개중 적어도 하나를 포함하는 부분집합의 개수)
= (전체 부분집합의 개수) - (특정 원소 k개를 포함하지 않는 부분집합의 개수)

집합 A = {1, 2, 3, 4, 5}일 때 다음을 구하여라.
(1) 2, 4를 포함하지 않는 부분집합의 개수
(2) 2, 4를 반드시 포함하는 부분집합의 개수
(3) 2, 4중 적어도 하나를 포함하는 부분집합의 개수

(1) 2, 4를 포함하지 않는 부분집합의 개수를 구하라고 했는데, 애초부터 A라는 집합이 2, 4를 포함하지 않았다고 생각해보죠. 이 집합을 B라고 한다면 B = {1, 3, 5}예요. (B의 부분집합의 개수) = (2, 4를 포함하지 않는 부분집합의 개수)이므로 23 = 8이에요.

공식을 이용해서 바로 구해보면 n(A) = 5이고, 2, 4라는 두 개의 원소를 포함하지 않으니까 25 - 2 = 23 = 8(개)이에요. 공식으로 바로 구해도 같네요.

(2)번은 (1)에서 구한 B의 부분집합에는 2, 4가 들어있지 않으니까 거기에 2, 4를 모두 넣어준다고 생각하면 돼요. 따라서 개수가 같죠. 8개에요.

(3)번 2, 4중 적어도 하나를 포함한다는 건 2를 포함하거나 4를 포함하거나 2, 4 둘 다를 포함하는 거예요. 전체 부분집합의 개수에서 2, 4를 둘 다 포함하지 않는 부분집합의 개수를 빼서 구해요. 25 - 25 - 2 = 32 - 8 = 24(개)

두 집합 A = {x|x는 5 이하의 자연수}, B = {1, 3, 5}일 때 B ⊂ X ⊂ A를 만족하는 X의 개수를 구하여라.

문제가 좀 복잡하네요. A = {1, 2, 3, 4, 5}, B = {1, 3, 5}

B ⊂ X니까 X는 B의 모든 원소를 포함하고 있어요. 그리고 X ⊂ A죠. 정리해보면 X는 B의 원소인 {1, 3, 5}를 포함하는 A의 부분집합이에요.

특정한 원소를 포함하는 부분집합의 개수를 구하는 공식을 사용하면 되겠네요.

25 - 3 = 4

X를 직접 구하는 게 아니라 개수만 구하는 거니까 답은 4개입니다.

정리해볼까요
  • 특정한 원소를 포함하는 부분집합의 개수: (원래 원소 개수 - 특정한 원소의 개수) 만큼 2를 곱해준다. 2{n-r}
  • 특정한 원소를 포함하지 않는 부분집합의 개수 = 특정한 원소를 포함하는 부분집합의 개수
<<    고등수학 (하) 목차    >>
 
그리드형

+ 최근글