y = ax² + bx + c
y = ax² + bx + c에서 a, b, c 부호 구하기, 이차함수 계수 부호 찾기
이차함수식에서 미지수를 구하면 함수식을 완성시킬 수 있어요. 그런데 이차함수 식을 구하는 것이 아니라 계수의 부호를 판별하는 유형의 문제도 자주 나와요. 이번 글에서는 이차함수의 계수의 부호를 알아내는 방법을 공부합니다.
부호를 구하는 데 무작정 구할 수는 없죠? 바로 그래프를 보고 부호를 판단해야 해요.
이차함수는 두 가지 유형으로 표현하죠? 하나는 표준형, 다른 하나는 일반형 이렇게요.
두 가지 유형에서 계수의 부호을 어떻게 구하는 지 알아볼까요?
y = a(x-p)² + q에서 a, p, q 부호 찾기
이차함수의 표준형에서 계수는 a, p, q 에요.
가장 먼저 알 수 있는 건 a에요. a는 그래프의 모양을 보고 판단합니다. 어떤 모양이요? 어디로 볼록한 지를 보는 거죠.
a < 0 이면 그래프는 위로 볼록이고 a > 0이면 그래프는 아래로 볼록이에요. 그러니까 그래프가 아래로 볼록이면 a > 0이고, 위로 볼록이면 a < 0인 거죠.
그 다음은 p, q인데요. p, q는 뭐죠? 그래프의 꼭짓점의 좌표에요. 그러니까 꼭짓점이 어디에 있는지 보면 p, q의 부호를 알 수 있겠죠? 꼭짓점이 1사분면에 있다면 p > 0, q > 0 이런 식으로요.
y = a(x-p)² + q에서 a, p, q의 부호
a는 그래프가 볼록한 방향: 그래프가 위로 볼록하면 a < 0, 그래프가 아래로 볼록하면 a > 0
p는 꼭짓점의 x좌표의 위치: y축 왼쪽이면 p < 0, y축 오른쪽이면 p > 0
q는 꼭짓점의 y좌표의 위치: x축 아래면 q < 0, x축의 위면 q > 0
아래 y = a(x-p)² + q의 그래프를 보고 a, p, q의 부호를 구하여라.
왼쪽에 있는 그래프 먼저 볼까요?
그래프가 아래로 볼록이니까 a > 0이고요. 꼭짓점이 3사분면에 있어요. 3사분면(x<0, y<0)에 있으니까 p < 0, q < 0 이에요.
오른쪽 그래프는 위로 볼록이네요. 그래서 a < 0이고, 꼭짓점이 1사분면에 있으니까 p > 0, q > 0이에요.
y = ax² + bx + c에서 a, b, c 부호 구하기
먼저 a부터 부호를 구해보면요. 이차항의 계수인 a는 위에서와 마찬가지로 그래프의 모양, 즉 볼록한 방향을 보고 판단합니다. 똑같아요. 위로 볼록이면 a < 0, 아래로 볼록이면 a > 0이지요.
그 다음에는 c를 볼까요? c는 y 절편이에요. 따라서 y 절편이 x축 위면 c > 0, y 절편이 x축 아래면 c < 0이 되지요.
a와 c는 그래프를 보면 바로 알 수 있겠죠? 문제는 b인데, 이건 좀 복잡해요.
y = ax² + bx + c의 그래프, 이차함수 일반형에서 일반형 함수식을 표준형으로 바꾸는 법을 알아봤어요. 이 때는 a, b, c에 숫자가 있었는데, 이걸 숫자가 아닌 문자 그대로 바꾸면 어떻게 되나면요. 어쩌고 저쩌고가 돼요.
꼭짓점의 x 좌표 그러니까 축의 방정식이 가 되거든요. 따라서 꼭짓점의 x좌표가 어디인지를 보면 b의 부호를 알 수 있어요.
가 y축의 왼쪽에 있다고 해보죠.
이게 무슨 말이냐면 b를 2a로 나눴더니 양수가 된다는 말은 둘의 부호가 서로 같다는 뜻이죠. a와 b의 부호가 같은데, a의 부호는 그래프의 볼록한 방향에서 알 수 있으니 b의 부호도 알 수 있는 거죠.
가 y축의 오른쪽에 있다고 해보죠.
이번에는 b를 2a로 나눈 게 음수가 됐어요. 둘의 부호가 서로 반대라는 뜻이죠. 마찬가지로 a는 그래프의 볼록한 방향으로 알 수 있고, b는 a와 반대 부호를 가진다는 걸 알 수 있겠죠.
이거를 좌동우이라는 말로 표현해요. 그러니까 대칭축이 y축의 왼쪽에 있으면 a와 b의 부호가 같고, 대칭축이 y축의 오른쪽에 있으면 a와 b의 부호가 다르다라는 말이에요.
y = ax² + bx + c에서 a, b, c 부호
a는 그래프가 볼록한 방향: 그래프가 위로 볼록하면 a < 0, 그래프가 아래로 볼록하면 a > 0
b는 좌동우이: 대칭축이 y축의 왼쪽이면 a, b의 부호가 같고, 대칭축이 y축의 오른쪽이면 a, b의 부호가 반대
c는 y절편: y절편이 x축보다 위에 있으며 c > 0, y절편이 x축보다 아래 있으면 c < 0
아래 y = ax² + bx + c의 그래프를 보고 a, b, c의 부호를 구하여라..
왼쪽에 있는 그래프 먼저 볼까요?
그래프가 아래로 볼록이니까 a > 0이고요. 대칭축이 y축 왼쪽에 있죠? 좌동우이니까 b의 부호는 a의 부호와 같아요. a > 0이니까 b > 0이네요. y절편이 x축보다 아래 있어서 c < 0이에요.
답은 a > 0, b > 0, c < 0 입니다.
오른쪽 그래프는 위로 볼록이니까 a < 0이고요. 대칭축이 y축의 오른쪽에 있으니까 a와 b의 부호가 반대에요. 따라서 b > 0이죠. y절편은 x축보다 아래 있어서 c < 0입니다.
답은 a < 0, b > 0, c < 0이네요.
y = ax² + bx + c의 그래프, 이차함수 일반형
이차함수의 그래프에 대해서 공부하고 있는데, y = a(x - p)2 + q꼴 이었어요. 이런 형태를 이차함수의 표준형이라고 해요.
이차방정식에서는 ax2 + bx + c = 0 꼴을 이차방정식의 일반형이라고 하는데, 이차함수에도 일반형이 있어요. 이차함수의 일반형은 이차방정식 우변의 0을 y로 바꾸고, 좌우변을 바꾼 y = ax2 + bx + c이에요.
이차함수의 일반형 y = ax2 + bx + c
y = ax2 + bx + c의 특징을 먼저 알아볼까요?
이차함수 y = a(x - p)2 + q의 그래프에서 그래프의 모양과 폭을 결정하는 건 뭐죠? 이차항의 계수인 a죠. 일반형에서도 이차항의 계수가 그래프의 폭과 모양을 결정합니다.
y = ax2+ bx + c에서 이차항의 계수는 a이고 a > 0이면 그래프는 아래로 볼록, a < 0이면 위로 볼록이에요. 또 |a|가 클수록 그래프의 폭은 좁아집니다.
x절편은 y = 0일 때의 x좌표죠? y = 0을 넣어볼까요? 0 = ax2 + bx + c가 되어서 이차방정식의 해가 x절편이 되는 걸 알 수 있어요.
y절편은 x = 0일 때의 y좌표죠? x = 0을 넣어보면 y = c가 나와요.
일반형은 표준형보다 x, y 절편 찾기가 쉬워요.
표준형은 꼭짓점이나 축의 방정식, y값의 범위를 알아보기가 쉽죠. y = a(x - p)2 + q에서 꼭짓점은 (p, q)라는 걸 알 수 있잖아요.
그러니까 꼭짓점을 찾을 때는 표준형, y절편을 찾을 때는 일반형이 편하겠죠. 그래프의 모양이나 폭은 어떤 것이든 상관없고요.
그런데 함수식을 두 가지 형태로 다 주는 건 아니잖아요. 식이 표준형이면 x = 0, y = 0을 대입해서 x, y 절편을 찾을 수 있어요. 하지만 일반형일 때는 그 상태 그대로 꼭짓점이나 y값의 범위를 찾을 방법이 없죠.
그래서 일반형을 표준형으로 바꿔야 해요.
완전제곱식을 이용한 이차방정식의 풀이
일반형은 x에 관해 내림차순으로 쓰인 식이고, 표준형은 완전제곱식을 포함하고 있는 식이에요. 그러니까 완전제곱식 + 상수항의 꼴이죠.
일반형을 완전제곱식으로 바꾸는 걸 우리는 이미 해봤어요. 바로 “완전제곱식을 이용한 이차방정식의 풀이”에서요.
완전제곱식을 이용한 이차방정식의 풀이에서 어떻게 했는지 보죠.
- 이차항의 계수로 양변을 나눈다.
- 상수항을 우변으로 이항
을 양변에 더해준다.
- 좌변을 완전제곱식으로 인수분해: (x + p)2 = k
- 제곱근을 이용하여 해를 구한다.
x2 - 2x - 6 = 0
기억나죠? 정말 많이 해봤던 문제잖아요.
y = ax2 + bx + c를 y = a(x-p)2 + q로 바꾸기 (일반형을 표준형으로)
이차방정식에서 완전제곱식을 만들었던 것과 이차함수의 일반형을 표준형으로 바꾸는 건 80% 비슷해요.
다른 건 두 가지. 위의 순서에서 2번에 있는 상수항을 우변으로 이항하는 게 없어요. 그리고 해를 구하는 게 아니니까 5번 단계가 필요 없어요. 두 단계가 줄었으니까 더 편하겠죠?
그다음에는 이차항의 계수로 양변을 나눈다고 했는데, 이걸 “이차항의 계수로 이차항과 일차항을 묶는다.”로 바꾸면 돼요. 인수분해한다는 얘기예요. 을 양변에 더해주는 건 좌변에만 한 번 더해주고 빼주는 걸로 바꿔요. 그 외 나머지는 다 똑같아요.
연습을 한번 해보죠.
y = 2x2 + 4x + 5의 꼭짓점의 좌표과 축의 방정식을 구하여라.
먼저 이차항의 계수로 이차항과 일차항을 묶어요.
y = 2(x2 + 2x) + 5
을 더해줘야 하는데 어디에 더하냐면 괄호로 묶인 부분 안에 더해줘요. 그리고 원래 식에 없던 값을 더해줬으니까 한 번 빼줘야 원래 식과 같은 식이 되겠죠? 빼주는 것도 괄호 안에 빼줘요. 문제에서는 (2 / 2)2 = 1을 더해주고 빼줘야겠네요.
y = 2(x2 + 2x + 1 - 1) + 5
괄호 안에 있는 부분 중 앞의 세 항(x2 + 2x + 1)을 완전제곱식으로 바꿔요.
y = 2{(x + 1)2 - 1} + 5
괄호 안에는 완전제곱식과 상수항이 남아있는데, 이 상수항을 괄호 밖으로 빼네요. 이때 주의해야할 건 괄호 앞에 이차항의 계수였던 2가 있으니까 분배법칙을 이용해서 빼내야 한다는 거예요.
y = 2(x + 1)2 - 2 + 5
y = 2(x + 1)2 + 3
완전제곱식을 이용한 이차방정식의 풀이와 거의 비슷하죠? 이렇게 표준형으로 바꿨더니 꼭짓점의 좌표와 축의 방정식을 구할 수 있겠네요. 꼭짓점은 (-1, 3), 축의 방정식은 x = -1이군요.
한 문제 더 해보죠.
y = -x2 + 4x -2의 꼭짓점과 y절편을 구하여라.
꼭짓점은 표준형에서 y절편은 일반형에서 구하는 게 편해요.
문제의 식이 일반형이니까 y절편부터 구해보죠. 이차함수 y = ax2 + bx + c에서 x = 0일 때 y 좌표가 y절편이니까 –2네요.
꼭짓점을 구하기 위해서 일반형을 표준형으로 바꿔보죠.
꼭짓점의 좌표는 (2, 2)이고 y 절편은 -2네요.