이차함수의 최댓값

이차함수의 활용

2012. 7. 7. 00:30

이차함수의 마지막 이차함수의 활용입니다. 이차함수는 1학기의 마지막 단원이니까 오늘 내용만 하면 1학기 수학이 다 끝나네요.

활용은 모든 단원에서 하지만 원리는 같아요. 구하는 미지수가 뭔지 찾고, 식 세우고, 계산하는 거죠.

이차함수의 활용은 그런 면에서 이차방정식의 활용과 비슷한 유형의 문제가 많이 나와요. 이차방정식의 활용을 열심히 공부했던 학생이라면 어렵지 않게 느껴질 겁니다.

이차함수의 활용

이차함수의 활용 푸는 순서

  1. x, y 정하기
    문제를 잘 읽고 문제에서 구하고자 하는 것을 x, y로 놓는다.
  2. 함수식 만들기
    x, y의 관계를 잘 나타낼 수 있는 식을 만든다.
  3. 답 구하기
    함수식을 풀거나 그래프를 이용하여 구하는 답을 찾는다.
  4. 확인하기
    구한 답이 문제의 조건에 맞는지 확인한다.

함수의 활용 문제에서 대부분 변하는 값을 x로 놓아요. 시간이라든가 길이 같은 게 되죠. 그리고 x에 따라 바뀌는 종속적인 값을 y로 놓아요. 시간에 따라 바뀌는 온도, 가로 길이에 따라 바뀌는 넓이 같은 거죠.

이차함수의 활용에서는 최대, 최소를 구하는 문제가 많이 나오거든요. 최대/최소를 직접 구하거나 최댓값, 최솟값을 가질 때 변수의 값을 구하는 문제요. 따라서 일반형이 아닌 표준형을 많이 사용해요.

또 표준형 y = a(x - p)2 + q에서 a에 따라서 최댓값, 최솟값 중 하나만 가지니까 a의 부호도 잘 보죠.

두 수의 합을 주고 곱을 구하는 문제

두 수의 합의 관계식을 주고, 곱의 최댓값을 구하거나 곱이 최대일 때 두 수를 구하는 문제 유형이에요.

실제로 두 수를 주는 건 아니고 두 수의 관계식을 주는 거죠. 예를 들어 두 수의 합이 10이다. 두 수의 차가 20이다 이런 식으로요.

한 수를 x라고 놓으면 다른 수는 관계식에서 구할 수 있어요. 두 수의 합이 10일 때, 한 수를 x라고 놓으면 다른 한 수는 10 - x가 되는 거지요. x(10 – x)는 두 수의 곱이 되겠죠?

합이 16인 두 수의 곱이 가장 클 때 그때의 두 수와 곱의 최댓값을 구하여라.

한 수를 x라고 놓으면 다른 한 수는 16 - x가 되겠죠? 곱은 x(16 - x)가 될 거고요.

y = x(16 - x)
y = 16x - x2
y = -x2 + 16x
y = -(x2 - 16x)
y = -(x2 - 16x + 82 - 82)
y = -(x - 8)2 + 64

x = 8일 때 곱이 최대가 되고 그 때 곱은 64네요. 한 수가 8이니까 다른 한 수는 16 - 8 = 8이겠고요. 답은 두 수는 8, 8, 곱의 최댓값은 64가 되겠습니다.

도형의 둘레, 넓이 문제

자주 나오는 유형 중 하나가 도형의 둘레와 넓이에 관한 문제예요. 이 유형도 위의 유형과 같아요. 도형의 둘레는 가로, 세로 길이의 합이고 도형의 넓이는 가로, 세로 길이의 곱이잖아요.

둘레의 길이가 36cm인 사각형의 넓이가 최대가 되도록 하는 가로, 세로 길이를 구하여라.

가로, 세로 길이를 구하라고 했으니까 가로를 x, 세로를 y로 놓으면 될까요? 그렇게 하지 않아요. 가로를 x로 놓으면 가로 x에 따라 바뀌는 넓이를 y로 놓는 거예요.

가로를 x라고 놓으면 세로는 둘레의 길이에서 구할 수 있어요. 둘레는 2 × (가로 + 세로) = 36이니까 세로 길이는 18 - x네요.

직사각형의 넓이는 가로 × 세로니까 y = x (18 - x)라는 함수식을 세울 수 있어요

y = x(18 - x)
y = -x2 + 18x
y = -(x2 - 18x)
y = -(x2 - 18x + 92 - 92)
y = -(x - 9)2 + 81

x = 9일 때 최댓값 81을 가지므로 가로가 9cm일 때 넓이가 최대예요. 가로가 9cm니까 세로는 18 - 9 = 9cm군요.

가로, 세로 길이가 모두 9cm인 정사각형일 때 넓이가 최대네요.

정리해볼까요

이차함수의 활용

  1. 구하고자 하는 수를 x, y로 놓는다
  2. x, y의 관계를 함수식으로 나타낸다
  3. 함수를 풀어 답을 찾는다.
  4. 구한 답이 문제의 조건에 맞는 지 확인한다.
 
그리드형

이차함수에서 최댓값최솟값을 구하는 방법입니다.

함수의 최댓값과 최솟값은 바로 y값을 말하는 거지요. 따라서 y의 범위를 구하면 돼요. y의 범위를 구해서 가장 큰 값이 최댓값, 가장 작은 값이 최솟값이죠.

일반적으로 x의 범위가 주어지지 않으면 x는 실수 전체라고 생각해요. 범위가 주어졌을 때는 그 범위에 맞게 해야겠지요. 또 범위가 주어지지 않더라도 사람 수나 길이 등은 양수나 자연수라는 것도 잊으면 안돼요.

최대, 최소를 구할 때는 y의 범위를 바로 알 수 있는 이차함수의 표준형을 이용해요. 일반형으로 나와 있으면 표준형으로 고쳐요.y = ax2 + bx + c의 그래프, 이차함수 일반형

이차함수 최솟값

이차함수의 그래프를 생각해보죠. y = a(x - p)2 + q에서 a > 0이라고 해보죠. 그래프는 어떻게 되나요? a > 0이면 그래프는 아래로 볼록인 모양이에요. 아래로 볼록이니까 그래프에서 가장 아래에 있는 곳의 y값은 꼭짓점의 y좌표예요. 꼭짓점의 y좌표는 q잖아요. 따라서 y의 범위가 y ≥ q죠. y는 q보다 크니까 최솟값은 q예요.

그럼 최댓값은 얼마일까요? 그래프를 다시 한 번 보죠. 대칭축을 기준으로 또는 꼭짓점을 기준으로 좌우 양쪽으로 가면 갈수록 y는 커져요. x축의 오른쪽으로 얼마나 갈 수 있을까요? 끝도 없이 가겠죠? 그렇다면 그에 해당하는 y값도 끝도 없이 커질 거예요. x축 왼쪽으로도 마찬가지죠. 무슨 말이냐면 y가 끝을 알 수 없는 값을 가진다는 거예요. 그래서 그 끝을 알 수 없으므로 최댓값이라는 게 존재하지 않는 거죠.

  • a > 0인 이차함수의 최솟값은 x = p일 때, y = q
  • 최댓값은 구할 수 없다.

이차함수의 최댓값

이차함수의 최댓값

이번에는 y = a(x - p)2 + q에서 a < 0이라고 해볼게요. 그래프는 위로 볼록한 모양이에요. 위로 볼록한 그래프에서 가장 높은 곳에 있는 점은 꼭짓점이죠? y값의 범위가 y ≤ q예요. 최댓값이 q라는 얘기죠.

최솟값은 x축 양쪽으로 가면 갈수록 작아져서 가장 작은 값을 알 수 없어요. 최솟값은 구할 수 없어요.

  • a < 0인 이차함수의 최솟값은 x = p일 때, y = q
  • 최솟값은 구할 수 없다.

이차함수 y = a(x - p)2 + q에서 x의 범위가 주어지지 않으면 이차함수는 최댓값 또는 최솟값 중 하나만
a > 0이면 최솟값만
a < 0이면 최댓값만
최댓값/최솟값은 꼭짓점의 y 좌표. x = p일 때 y = q

x의 범위가 주어졌을 때 최대, 최소

보통 흔한 경우는 아닌데, x의 범위가 주어질 때가 있어요. 문제에서 x의 범위를 따로 주는 건 아니고 사람 수라든가 길이, 개수 이런 식으로 특정한 범위를 가질 수밖에 없는 값들이 주어지요. 예를 들어서 20명의 사람이 있는데, 어쩌고 저쩌고에서는 “0 ≤ x ≤ 20인 자연수”라는 범위를 갖는 거죠

이럴 때도 기본적으로 a > 0이면 꼭짓점에서 최솟값, a < 0이면 꼭짓점에서 최댓값을 갖는 건 같아요. 이건 바뀌지 않아요. 추가로 x 범위의 경계에서 최대, 최소를 가질 수 있다는 건데요.

이차함수의 최댓값, 최솟값

a > 0이면 꼭짓점에서 최솟값, 양쪽 경계 중 한 곳에서 최댓값을 가져요.
a < 0이면 꼭짓점에서 최댓값, 양쪽 경계 중 한 곳에서 최솟값을 가져요.

물론 식에 양쪽 경계의 값을 넣어서 나온 결과를 비교할 수도 있는데요. 간단하게 구하려면 축의 방정식 즉, 꼭짓점의 x좌표에서 더 먼 쪽에서 최대/최소를 가져요.

정리해볼까요

이차함수의 최댓값과 최솟값

  • 이차함수의 최댓값과 최솟값은 a의 부호에 의해 결정
  • a > 0이면 꼭짓점에서 최솟값
  • a < 0이면 꼭짓점에서 최댓값
  • x의 범위가 있을 때
    • a > 0이면 꼭짓점에서 최솟값, 꼭짓점에서 먼 곳에 최댓값
    • a < 0이면 꼭짓점에서 최댓값, 꼭짓점에서 먼 곳에 최솟값
 
그리드형

+ 최근글