이등변삼각형
삼각형 외심의 위치, 삼각형 외심의 활용
이번에는 예각삼각형, 둔각삼각형, 직각삼각형에서 외심이 어디에 있는지 알아볼 거예요. 또 삼각형의 외심을 여러 가지 활용하는 방법도 알아볼 거고요.
먼저 삼각형의 외심, 삼각형 외심의 성질을 간단히 정리해보죠.
다각형의 꼭짓점을 모두 지나는 원을 외접원이라고 하고, 외접원의 중심을 외심이라고 해요. 삼각형에서 외심은 각 변의 수직이등분선의 교점이고, 외심에서 세 꼭짓점에 이르는 거리는 같지요.
삼각형 외심의 위치
예각삼각형, 둔각삼각형, 직각삼각형에서 외심의 위치
삼각형은 세 내각이 모두 예각이면 예각삼각형, 한 각이 둔각이면 둔각삼각형, 한 각이 직각이면 직각삼각형으로 나눠요.
예각삼각형은 삼각형의 외심, 삼각형 외심의 성질에서 본 것처럼 삼각형의 외심이 삼각형의 내부에 있어요. 둔각삼각형은 삼각형의 외부에 외심이 있고요. 정확하게 말하면 둔각의 대변, 길이가 가장 긴 변의 바깥쪽에 외심이 있어요.
직각삼각형은 외심이 빗변에 있는데, 바로 빗변의 중점이 외심이 됩니다. 따라서 외접원의 반지름의 길이는 빗변 길이의 절반이죠.
△ABC가 직각삼각형이고, 일 때, ∠DBC의 크기를 구하여라.
직각삼각형에서 빗변의 중점은 삼각형의 외심이에요. 따라서 이죠. 즉 △DBC는 이등변삼각형이에요. 이등변삼각형에서 밑각의 크기는 같으니까 ∠DBC = ∠DCB = 20°네요.
삼각형 외심의 활용
점 O가 △ABC의 외심일 때, ∠x + ∠y + ∠z = 90°
점 O가 삼각형의 외심이니까 외심에서 각 꼭짓점에 이르는 거리가 같아요. =
=
니까 △OAB, △OBC, △OCA는 이등변삼각형이에요. 이등변삼각형의 성질, 이등변삼각형이 되는 조건에 따라서 ∠OAB = ∠OBA = ∠x, ∠OBC = ∠OCB = ∠y, ∠OCA = ∠OAC = ∠z가 되죠.
삼각형 내각의 합은 180°이므로 2∠x + 2∠y + 2∠z = 180°이고, ∠x + ∠y + ∠z = 90°가 됩니다.
∠BOC = 2∠A
아래 그림처럼 △OAB만 따로 떼서 생각해보죠. 선분 OA의 연장선을 그어요.
삼각형 외각의 크기, 외각의 합에 따르면 삼각형의 외각은 이웃하지 않은 두 내각의 합과 같아요. ∠BOD = ∠OAB + ∠OBA
여기서, ∠OAB = ∠OBA니까 ∠BOD는 2∠OAB에요.
마찬가지로 △OAC에서 삼각형의 외각과, ∠OCA = ∠OAC에 따라 ∠COD = 2∠OAC가 되지요.
결국, ∠BOC = ∠BOD + ∠COD = 2∠OAB + 2∠OAC = 2∠A가 됩니다.
점 O가 △ABC의 외접원의 중심일 때, ∠C의 크기를 구하여라.
점 O가 외심이므로, △OAB는 인 이등변삼각형이에요. 따라서 ∠OAB = ∠OBA = 30°입니다. ∠AOB = 180° - 60° = 120°예요.
∠AOB = 2∠C이므로 ∠C = 120 ÷ 2 = 60°네요.
함께 보면 좋은 글
삼각형의 외심, 삼각형 외심의 성질
삼각형의 내심, 삼각형 내심의 성질
삼각형 내심의 활용
삼각형의 외심과 내심, 삼각형의 내심과 외심 비교
이등변삼각형의 성질, 이등변삼각형이 되는 조건
이제부터 본격적으로 도형과 도형의 성질에 대해서 알아볼 거예요.
우리가 알고 있는 도형들의 정확한 수학적 정의를 알아보고, 그 정의를 이용해서 증명도 해보죠. 증명된 명제는 정리로서 기억해야해요.
증명에 많이 사용되는 정의 중 가장 대표적인 게 삼각형의 합동조건이에요. 이 글에서도 삼각형의 합동조건을 계속 사용할 거니까 한 번 읽어보세요.
이등변삼각형의 정의, 이등변삼각형의 성질
이등변삼각형은 두 변의 길이가 같은 삼각형이에요. 이등변삼각형에서 길이가 같은 두 변으로 이루어진 각을 꼭지각이라고 해요. 그리고 꼭지각이 아닌 다른 두 각을 밑각이라고 하고, 꼭지각의 대변을 밑변이라고 해요.
이등변삼각형의 성질
- 두 밑각의 크기가 같다.
- 꼭지각의 이등분선은 밑변을 수직이등분한다.
이등변삼각형이 무엇인지, 꼭지각과 밑각, 밑변은 어떤 것인지 대한 설명은 정의에 해당해요. 그리고 이등변삼각형의 성질은 참으로 밝혀진 명제, 즉 정리에 해당하죠. 정의와 정리의 차이를 알 수 있겠죠? 수학의 정의, 정리, 증명
그럼 참으로 밝혀진 명제인 이등변삼각형의 성질을 증명해볼까요. 일단 증명할 때는 가정과 결론, 증명으로 나눠서 해요.
이등변삼각형에서 두 밑각의 크기는 같다.
이등변삼각형이니까 두 변의 길이가 같아요. 이걸 가정으로 쓰고, "두 밑각의 크기가 같다"를 결론으로 하면 되네요.
가정: △ABC에서 이다.
결론: ∠B = ∠C이다
△ABC에서 꼭지각 ∠A의 각의 이등분선을 긋고 밑변과 만나는 점을 점 D라고 해보죠. 그러면 △ABD와 △ACD로 나뉘어요.
(1) (가정)
(2) ∠BAD = ∠CAD (∠A의 이등분)
(3) 는 공통
(1), (2), (3)에서 △ABD와 △ACD는 두 변의 길이와 그 끼인각이 같은 합동인 삼각형이에요. △ABD ≡ △ACD
따라서 대응각인 ∠B와 ∠C는 크기가 같죠. (증명 끝.)
이등변삼각형에서 꼭지각의 이등분선은 밑변을 수직이등분한다.
이등변삼각형이니까 두 변의 길이가 같고요. 꼭지각의 이등분선이라고 했으니까 둘로 나눈 각은 크기가 같겠죠? 이걸 가정과 결론으로 써보죠.
가정: △ABC에서 , ∠BAD = ∠CAD이다.
결론: ,
이다
(1) (이등변삼각형, 가정)
(2) ∠BAD = ∠CAD (∠A의 이등분, 가정)
(3) 는 공통
(1), (2), (3)에서 △ABD와 △ACD는 두 변의 길이와 그 끼인각이 같은 합동인 삼각형이에요. (4) △ABD ≡ △ACD
대응변인 선분 BD와 선분 CD의 길이는 같죠. (5) 이다
그리고, 대응각인 ∠BDA와 ∠CDA도 같아요. ∠BDA = ∠CDA
그런데 이 크기가 같은 두 각을 더하면 평각인 ∠BDC가 돼요. ∠BDA + ∠CDA = 180° 결국 (6) ∠BDA = ∠CDA = 90°인 거죠.
(4)에 의해 가 되고, (6)에 의해서
가 됩니다. (증명 끝.)
이등변삼각형이 되는 조건
이등변삼각형이 어떤 삼각형인지 어떤 성질이 있는지 알아봤어요.
이번에는 반대로 어떤 삼각형이 있는데, 이게 이등변삼각형인지 아닌지 알아보려고 해요. 어떻게 알 수 있을까요?
이등변삼각형의 성질을 거꾸로 하면 돼요. 이등변삼각형은 두 밑각의 크기가 같다고 했어요. 이걸 거꾸로 해서 세 내각 중 두 내각의 크기가 같은 삼각형이 이등변삼각형인 거죠.
이등변삼각형이 될 조건 - 두 내각의 크기가 같은 삼각형은 이등변삼각형
이것도 가정과 결론으로 나누어 증명해보죠.
가정: △ABC에서 ∠B = ∠C
결론:
△ABC에서 ∠A의 각의 이등분선을 긋고 밑변과 만나는 점을 점 D라고 해보죠. 그러면 △ABD와 △ACD로 나뉘어요.
(1) ∠BAD = ∠CAD (∠A의 이등분)
(2) 는 공통
모든 삼각형 내각의 합은 180°에요. △ABD의 내각의 합과 △ACD의 내각의 합은 같죠.
∠BAD + ∠B + ∠ADB = ∠CAD + ∠C + ∠ADC인데, (1) ∠BAD = ∠CAD와 가정 ∠B = ∠C에 의해서 (3) ∠ADB = ∠ADC가 돼요. 결국 두 삼각형에서 세 각의 크기가 서로 같아요.
(1), (2), (3)에 의해서 △ABD와 △ACD는 한 변의 길이와 그 양끝각이 같은 합동이지요. (4) △ABD ≡ △ACD.
따라서 대응변인 선분 AB와 선분 AC의 길이가 같아요. (증명 끝.)
다음 그림에서 x를 구하여라.
그림에 보면 선분 AB와 선분 AC의 길이가 같다고 표시되어 있네요. 즉 이등변삼각형이에요. 이등변삼각형에서 밑각의 크기는 서로 같아요.
삼각형 내각의 크기의 합은 180°인데, 한 각은 110° 다른 두 같은 x로 크기가 같아요.
x + x + 110 = 180
x = 35(°)