음수

대입, 식의 값

2012. 12. 12. 12:30

아직은 새로운 단원을 시작하기에 앞서 이 단원에서 사용할 기본적인 것들을 공부하는 단계입니다. 정확하게 이해를 해야 이 단원을 잘 이해할 수 있어요.

대입이라는 용어는 매우 자주 사용하는 용어라서 그 의미를 정확히 알고 있어야 해요. 식의 값의 뜻은 이름 그대로예요. 용어가 중요한 것도 아니고, 의미도 별거 없어요. 그냥 알고 넘어가면 되는 거예요.

어려운 내용은 아니지만, 연습이 좀 필요한 과정입니다. 교과서의 예제 문제를 꼭 풀어보세요.

대입

대입은 문자가 있는 식에서 문자 대신에 숫자를 넣는 거예요. 조금 더 쉽게 말하면 문자를 숫자로 바꾸는 거고요. 무작정 바꾸면 안 되고 문자와 숫자가 같을 때에만 가능해요.

축구에서 선수교체를 하면 경기를 하고 있던 선수는 빠지고, 벤치에 있던 선수가 대신 들어가죠? 대입도 마찬가지로 식에 원래 있던 걸 빼고 그 자리에 뺀 것과 같은 걸 넣는 거예요.

x = 2이고, x + 3이라는 식이 있다고 해보죠. x + 3이라는 식에 x = 2를 대입해볼까요? x가 2와 같으니까 x + 3이라는 식에서 x는 빼고, 그 자리에 2를 넣어도 식은 바뀌지 않죠? x + 3 = 2 + 3 = 5가 되겠죠.

대입

하나만 더 해볼까요?

y = 5일 때, y - 3을 구해보죠. y - 3이라는 식에 y = 5을 대입하면 y는 없어지고 그 자리에 5가 들어가요. y - 3 = 5 - 3이 되어서 결국은 2가 돼요.

식의 값

문자에 수를 대입해서 식을 계산한 값을 식의 값이라고 해요. 위에서는 2가 바로 식의 값이 되는 거죠.

식의 값을 구하는 순서를 알아볼까요?

식을 간단히 하기 위해서 곱셈기호와 나눗셈기호의 생략한 식이라면 곱셈기호와 나눗셈기호를 다시 살려줘야 해요. 문자와 숫자사이, 문자와 문자 사이에서만 곱셈기호를 생략한다고 했잖아요. 지금 우리는 문자를 숫자로 바꿀 거예요. 그러면 숫자들끼리의 곱이라서 곱셈기호를 생략할 수 없게 돼요.

곱셈기호를 다시 살렸으면 문자를 지우고, 그 자리에 문자와 크기가 같은 숫자를 넣으세요.

x = 2일 때, 2x + 1을 구해보죠. 2x는 곱셈기호가 생략되어 있어요. 다시 써줘야 해요.

x = -2라면 어떨까요? 다른 건 같아요. 대신 음수니까 다른 기호와 헷갈리지 않도록 괄호를 쳐주는 게 다르죠.

x =  일 때 를 구해볼까요? 식에 x를 대입하면 이라는 이상한 식이 돼버리죠? 이럴 때는 분수를 나눗셈으로 바꿔서 대입해요.

식의 값 구하는 방법
생략한 곱셈, 나눗셈 기호를 다시 되살린다.
음수를 대입할 때는 괄호 사용.
분수는 나눗셈으로 바꿔서

a = 2, b = -3일 때 다음 식의 값을 구하여라.
(1) 2a + 3b
(2) a2 + b3
(3)

(1)번에는 곱셈기호가 생략되어 있으니까 살려줘야겠네요. 또 b가 음수이므로 대입할 때 괄호를 사용해야 하고요.
2a + 3b
= 2 × a + 3 × b
= 2 × 2 + 3 × (-3)
= 4 + (-9)
= -5

(2) 거듭제곱일 때도 마찬가지로 음수에는 괄호를 쳐주세요.
a2 + b3
= 22 + (-3)3
= 4 + (-27)
= -23

(3) 분수일 때는 나눗셈으로 바꿔서 해요. 하지만 이 문제에서는 바로 대입해도 상관없어요. 바로 대입해도 식의 모양이 이상해지지 않거든요.

함께 보면 좋은 글

문자와 식, 문자를 포함한 식
곱셈기호의 생략, 나눗셈 기호의 생략
단항식과 다항식, 항, 상수항, 계수, 차수
일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈

정리해볼까요

대입: 문자를 포함한 식에서 문자를 숫자로 바꾸는 것.

식의 값 구하기

  • 생략한 곱셈, 나눗셈 기호를 다시 되살린다.
  • 음수를 대입할 때는 괄호 사용.
  • 분수는 나눗셈으로 바꿔서
 
그리드형

이번 글은 아주 아주 중요해요.

이제까지 자연수, 분수, 소수를 공부했는데, 정수라는 새로운 종류의 수를 공부할 거예요. 초등학교 때 자연수를 모르면 덧셈, 뺄셈, 구구단 같은 게 아무런 소용이 없잖아요. 마찬가지로 이 새로운 수 체계에 대해서 이해하지 못하면 앞으로 수학을 할 수가 없어요.

정수는 우리가 알고 있는 자연수를 살짝 모양만 바꾼 거니까 그렇다고 너무 어렵게 생각할 필요가 없어요.

정수양의 정수, 음의 정수, 0에 대해서 공부해보죠.

부호가 있는 수, 양수와 음수

어떤 통에 물을 5L 더 부었어요. 물의 양을 계산할 때 부어준 물의 양만큼 더해주겠죠. + 5를 해줄 거예요. 반대로 통에서 물 3L를 뺄 때는 - 3을 해줄 거예요.

이때의 +, -는 계산식에 사용하는 연산기호인데, 이 연산 기호를 숫자와 결합해서 사용하는 경우가 있어요. +5L는 통에 물 5L 넣으란 뜻이고요, -3L는 통에서 3L를 빼라는 뜻이에요.

+, - 기호를 아무 때나 사용하는 건 아니고, 반대의 성질을 가진 수에 붙여서 사용해요.

기온을 말할 때 영상, 영하를 사용하죠. 영상은 +, 영하가 -인 거죠.
산의 높이와 바다의 깊이를 잴 때 해발과 해저를 사용하는데, 해발은 +, 해저는 –고요.
양이 늘어날 때는 +, 양이 감소할 때는 –예요.
수입이 생기면 +, 지출이 생기면 -예요.

이 외에도 여러 경우가 있겠죠.

+가 양의 부호라서 + 부호가 붙은 수를 양수, -가 음의 부호라서 - 부호가 붙은 수를 음수라고 해요.

정수, 양의 정수, 0, 음의 정수

부호가 있는 수를 알아봤는데요.

자연수에 부호가 있다면 어떻게 될까요? 1, 2, 3, … 에 양의 부호 +가 있다면 +1, +2, +3, … 이 될 거고요, 음의 부호인 -가 있다면 -1, -2, -3, … 이 될 거예요.

우리는 이런 수들을 정수라고 불러요. 그중에서도 양의 부호 +가 붙어 있는 수를 양의 정수, 음의 부호 -가 붙어있는 수를 음의 정수라고 부르죠.

정수가 이 양의 정수와 음의 정수 두 가지만 있는 건 아니에요. 바로 0이 있어요. 0은 +0이나 -0이나 차이가 없어요. 부호가 아무런 의미가 없으니까 0은 그냥 0이에요. 양의 정수도 아니고 음의 정수도 아닌 그냥 0이지요.

양의 정수는 + 부호를 생략할 수 있어요. 그러니까 +1, +2, +3, … 이 아니라 그냥 1, 2, 3, … 이라고 써도 된다는 거죠. 1, 2, 3, … 은 우리가 알고 있는 자연수와 같죠? 자연수가 바로 양의 정수예요.

음의 정수는 부호를 생략하면 안 돼요. 음의 정수도 부호를 생략해버리면 양의 정수와 구별할 수 없으니까요.

0은 원래부터 부호가 없는 수니까 상관없고요. 0에 부호가 없다고 해서 양수라고 생각해서는 안 돼요.

다음 수를 양의 정수, 음의 정수로 구분하여라.
+7, -3, -5, 0, +1, 2, -11

양의 정수와 음의 정수는 숫자 앞에 부호를 보면 금방 구별할 수 있어요. + 부호가 있으면 양의 정수, - 부호가 있으면 음의 정수예요. 또 양의 정수는 + 부호를 생략할 수 있다는 것도 알아둬야 해요.

숫자 앞에 + 부호가 있는 것과 없는 걸 찾아보죠. 양의 정수: +7, +1, 2
숫자 앞에 - 부호가 있는 음의 정수: -3, -5, -11
0은 양의 정수도 아니고 음의 정수도 아닌 그냥 0이에요.

함께 보면 좋은 글

절댓값과 수직선, 절댓값의 성질
정수의 대소관계, 정수의 크기비교
정수의 덧셈, 덧셈에 대한 교환법칙, 결합법칙
정수의 뺄셈
유리수, 유리수의 분류

정리해볼까요

정수

  • 양의 정수(자연수): 자연수 앞에 + 기호를 붙인 수, +1, +2, +3,……….. + 기호 생략가능
  • 0
  • 음의 정수: 자연수 앞에 - 기호를 붙인 수, -1, -2, -3,………
 
그리드형

+ 최근글