수치대입법
나머지정리, 인수정리
다항식을 나누는 건 숫자를 나누는 것과 같다고 했어요. 다만 최고차항의 차수와 계수를 이용해서 나누는 것만 다르죠.
다항식을 나누는 이유는 몫과 나머지를 구하기 위해서예요. 그런데, 몫은 필요 없고 나머지만 구하는 경우도 있겠죠? 이럴 때 나머지정리라는 걸 이용하면 편리하게 나머지를 구할 수 있어요.
인수정리라는 것도 있는데, 인수정리의 인수는 인수분해에서 사용했던 인수와 같은 말이에요. 그러니까 인수분해와 인수정리의 연관성을 생각해보는 것도 좋아요.
나머지정리와 인수정리는 한 끗 차이니까 잘 비교해서 이해하세요.
나머지정리
다항식의 나눗셈에서 다항식 A를 0 아닌 다항식 B로 나눌 때, 몫을 Q, 나머지를 R이라고 하면 A = BQ + R이라는 식으로 나타낼 수 있다고 했어요.
다항식의 나눗셈을 할 때, 세로로 바꿔서 숫자의 나눗셈을 할 때처럼 한다고 했죠? 그래서 몫과 나머지를 구했어요. 그런데 몫은 구하지 않고 나머지만 바로 구할 수 있을까요? 나머지정리를 이용해서 나머지만 구할 수 있는데, 어떻게 하는지 알아보죠.
x3 + 2x2 - 3x + 7을 x - 4로 나누었을 때 나머지를 구해보죠.
A = BQ + R이므로
x3 + 2x2 - 3x + 7 = (x - 4)Q + R로 쓸 수 있겠죠?
R만 구하는 방법은 두 가지에요.
- 우변의 (x - 4)Q를 이항해서 R = x3 + 2x2 - 3x + 7 - (x - 4)Q로 만들거나
- 우변의 (x - 4)Q = 0으로 만들어서 R = x3 + 2x2 - 3x + 7을 구하는 거죠.
두 번째 방법에서 (x - 4)Q를 0이 되게 만들 수 있어요. 어떻게요? x = 4를 대입하면 되잖아요.
항등식의 미정계수법 - 수치대입법을 생각해보세요. x에 특정한 값을 대입해서 식을 간단하게 만들었잖아요. x = 4를 대입해보죠.
43 + 2 × 42 - 3 × 4 + 7 = (4 - 4)Q + R
R = 64 + 32 - 12 + 7 = 91
직접 나눗셈을 해보지 않아도 나머지만 빠르게 구했어요.
위에서는 A라는 식을 사용했는데요, 보통은 x에 관한 식을 사용하니까 나눠지는 식을 f(x)라고 하고, 몫은 Q(x)라고 해요. f(x)를 x - 4로 나눌 때의 나머지는 x = 4를 대입했을 때의 값이죠? 이건 f(4)라고 표현할 수 있잖아요.
f(x)를 (x - 4)로 나눌 때의 나머지 = f(4)
이번에는 같은 식을 2x - 1로 나누었을 때의 나머지를 구해보죠. 식을 써보면 아래처럼 될 거예요.
f(x) = x3 + 2x2 - 3x + 7 = (2x - 1)Q(x) + R
마찬가지로 수치대입법을 이용해서 x = 을 대입하면 (2x - 1)Q(x) = 0이 되어서 우변은 R만 남죠.
두 보기에서 확인할 수 있듯이 f(x)를 일차식으로 나눌 때의 나머지 R은 (나누는 일차식) = 0이 되는 x를 f(x)에 대입한 값과 같아요.
나머지정리
x에 대한 다항식 f(x)를 일차식 (x - α)로 나누었을 때 나머지 R = f(α)
x에 대한 다항식 f(x)를 일차식 (ax + b)로 나누었을 때의 나머지 R =
다항식 f(x)를 (x - 1)로 나눈 나머지는 1, (x - 2)로 나눈 나머지는 3일 때, f(x)를 (x - 1)(x - 2)로 나눈 나머지를 구하여라.
문제를 식으로 나타내 보죠.
f(x)를 (x - 1)로 나눈 나머지가 1 → f(1) = 1
f(x)를 (x - 2)로 나눈 나머지가 3 → f(2) = 3
f(x)를 (x - 1)(x - 2)로 나누기 → f(x) = (x - 1)(x - 2)Q(x) + R(x)
여기서 중요한 건 나머지는 나누는 식보다 차수가 작다는 거예요. 나누는 식이 (x - 1)(x - 2)로 이차식이니까 R은 상수항일 수도 있지만, x에 관한 일차식일 수도 있어요. x에 관한 일차식이니까 R(x) = ax + b라고 나타내야 합니다.
f(x) = (x - 1)(x - 2)Q(x) + ax + b
f(1) = (1 - 1)(1 - 2)Q(1) + a + b = 1
a + b = 1
f(2) = (2 - 1)(2 - 2)Q(2) + 2a + b = 3
2a + b = 3
a + b = 1, 2a + b = 3을 연립방정식으로 풀면 a = 2, b = -1이 되므로 R(x) = ax + b = 2x - 1이에요.
나머지정리는 나누는 식이 일차식일 때뿐 아니라 그보다 더 높은 차수의 식일 때도 사용할 수 있다는 걸 알 수 있죠? 또, 나누는 식 = 0이 되는 x의 개수가 더 많아지는 것도 확인할 수 있어요.
나누는 식이 일차식이면 R은 상수
나누는 식이 이차식이면 R(x) = ax + b
나누는 식이 삼차식이면 R(x) = ax2 + bx + c
인수정리
다항식의 나눗셈에서 다항식 A를 0이 아닌 다항식 B로 나누었을 때 나머지 R = 0이면 나누어떨어진다고 했어요. R = 0이니까 f(x)로 바꿔서 표현하면 f(x) = (x - α)Q(x)가 되겠죠?
나머지정리에 의해서 f(x)에 x = α를 대입하면 f(α) = 0이 돼요.
f(x) = (x - α)Q(x)에서 f(x)는 (x - α)와 Q(x)라는 두 다항식의 곱으로 되어있어요. 이렇게 어떤 다항식이 두 개 이상의 다항식의 곱으로 표시하는 걸 인수분해라고 했어요. 곱해져 있는 다항식을 인수라고 하죠? 따라서 (x - α)와 Q(x)는 f(x)의 인수에요.
그래서 이걸 인수정리라고 하는 거예요.
인수정리
x에 대한 다항식 f(x)가 (x - α)로 나누어떨어진다.
⇔ f(x) = (x - α)Q(x)
⇔ f(α) = 0
⇔ f(x)가 (x - α)를 인수로 가진다.
f(x)가 (ax + b)로 나누어떨어진다.
⇔ f(x) = (ax + b)Q(x)
⇔ = 0
⇔ f(x)가 (ax + b)를 인수로 가진다.
인수정리는 나머지정리 중에서 나머지 R = 0일 때를 말하는 거예요.
다항식 f(x) = 3x3 - ax2 + x - 6가 x - 2로 나누어떨어질 때 a의 값을 구하여라.
다항식 f(x)가 x - 2로 나누어떨어지면 f(2) = 0이에요.
f(2) = 3 × 23 - a × 22 + 2 - 6 = 0
4a = 24 + 2 - 6
4a = 20
a = 5
f(x) = 3x3 - 2x2 + ax - b가 (x - 1)과 (x - 2)로 나누어떨어질 때, a, b를 구하여라.
f(x)가 (x - 1)로 나누어떨어진다. ⇔ f(x) = (x - 1)Q1(x) ⇔ f(x)는 (x - 1)을 인수로 가진다. ⇔ f(1) = 0
f(x)가 (x - 2)로 나누어떨어진다. ⇔ f(x) = (x - 2)Q2(x) ⇔ f(x)는 (x - 2)을 인수로 가진다. ⇔ f(2) = 0
f(x)가 (x - 1)과 (x - 2) 두 개 모두를 인수로 가지므로 이걸 식으로 나타내면 f(x) = (x - 1)(x - 2)Q(x)로 쓸 수 있어요.
f(1) = 3 × 13 - 2 × 12 + a - b = 0
a - b = -1
f(2) = 3 × 23 - 2 × 22 + 2a - b = 0
2a - b = -16
a - b = -1, 2a - b = -16를 연립방정식으로 풀어보면 a = -15, b = -14
함께 보면 좋은 글
다항식의 나눗셈
항등식과 항등식의 성질
미정계수법 - 계수비교법, 수치대입법
[중등수학/중3 수학] - 인수분해, 공통인수로 인수분해
미정계수법 - 계수비교법, 수치대입법
항등식의 성질에서는 항등식의 기본 꼴인 0x + 0 = 0을 이용해서 모르는 계수를 구했는데요. 이제는 조금 다른 방법을 이용해서 항등식의 계수를 구하는 걸 알아볼 거예요.
항등식의 계수를 구하는 걸 미정계수법이라고 하는데, 계수비교법과 수치대입법의 두 가지가 있어요. 어떤 방법을 이용하더라도 결과는 같아요. 하지만 문제에 따라서 편한 방식이 있으니까 어떤 문제에서 어떤 방법을 사용하는 것이 조금이라도 더 쉽게 푸는 건지 알아두었다가 상황에 맞게 잘 선택하세요.
특히 계수비교법보다는 수치대입법으로 풀어야 하는 문제가 조금 어렵게 나오는 경향이 있으니까 수치대입법에 대해서는 조금 더 신경을 쓰세요.
미정계수법
미정계수법은 이름에서 알 수 있듯이 항등식에서 미정인 계수를 찾아내는 방법이에요. 미정은 아직 정해지지 않았다는 뜻으로 모른다는 거죠. 즉, 구해야 하는 거예요. 계수비교법과 수치대입법의 두 가지가 있어요.
계수비교법
항등식에서 차수별로 각 항의 계수들을 비교해서 모르는 계수를 찾아내는 방법이에요. 항등식의 성질에서 했던 내용을 떠올려 보세요.
ax + b = cx + d가 x에 관한 항등식 ⇔ a = c, b = d
ax2 + bx + c = a'x2 + b'x + c'x에 관한 항등식 ⇔ a = a', b = b', c = c'
좌변과 우변에 있는 동류항끼리 계수가 같으면 항등식이라는 걸 이용하는 게 바로 계수비교법이에요.
ax + 3 = 2x - b가 x에 관한 항등식일 때, a, b를 구해보죠.
좌변의 x항과 우변의 x항의 계수가 같아야 하고, 좌변의 상수항과 우변의 상수항이 같아야 하므로 a = 2, -b = 3에서 b = -3이에요.
계수비교법은 차수별로 계수를 비교해야 하기 때문에 괄호가 있으면 모든 괄호를 풀고, 좌변, 우변에서 동류항 정리를 한 다음에 비교해야 해요.
수치대입법
수치대입법은 식의 x에 임의의 숫자를 대입하는 거예요. 항등식은 모든 x에 대해서 성립하니까 아무 숫자나 넣어도 식이 성립하잖아요. x에 임의의 값을 넣은 다음에 남는 문자들을 연립방정식으로 풀어내는 방법이에요. 수치대입법은 괄호를 풀 필요가 없이 바로 계산할 수 있는 장점이 있어요.
예를 들어 (x + 1)10같은 항이 들어있다면 이걸 전개해서 풀 수는 없겠죠?
x에 값을 대입할 때는 아무 값이나 넣는 게 아니라 모르는 계수가 있는 항을 없앨 수 있는 x값을 대입하는 게 좋아요.
a(x + 1)2 + bx - 3 = 4x2 + 2x + 1를 수치대입법으로 풀어보죠.
모르는 계수는 a, b인데, 첫 번째 a가 있는 항을 0으로 만드는 x는 -1이죠. x = -1이면 a(x + 1)2 = 0이 돼요. x = -1을 대입해보죠.
a(-1 + 1)2 + b × (-1) - 3 = 4 × (-1)2 + 2 × (-1) + 1
-b - 3 = 4 - 2 + 1
b = -6
bx = 0이 되도록 x = 0을 대입해보죠.
a(0 + 1)2 + b × 0 - 3 = 4 × 02 + 2 × 0 + 1
a - 3 = 1
a = 4
a = 4, b = -6이 되었네요.
계수비교법으로 풀어볼까요? 식을 전개해보죠.
a(x + 1)2 + bx - 3 = 4x2 + 2x + 1
a(x2 + 2x + 1) + bx - 3 = 4x2 + 2x + 1
ax2 + 2ax + a + bx - 3 = 4x2 + 2x + 1
ax2 + (2a + b)x + a - 3 = 4x2 + 2x + 1
x2의 계수: a = 4
x의 계수: 2a + b = 2 → b = -6
상수항: a - 3 = 1 → a = 4
계수비교법으로 풀어도 a = 4, b = -6이 나와요.
계수비교법, 수치대입법 중 어느 방법을 선택해서 값을 구해도 결과는 같아요. 문제에 따라서 좀 더 쉬운 방법을 선택해서 값을 찾으면 돼요.
때에 따라서는 계수를 없애지 못할 수도 있는데, 이때는 계수에 곱해지는 수가 1, -1 등 크기가 작은 숫자가 되도록 넣으면 돼요. 예를 들어 위 식에서 x = -2를 넣으면 a(x + 1)2 = a가 되고, x = 1을 넣으면 bx = 1b가 되니까 계산하기가 편해지겠죠?
계수비교법: 괄호를 모두 전개 → 차수별로 계수가 같음을 이용해서 모르는 계수를 구함.
수치대입법: 모르는 계수가 있는 항을 0으로 하거나 가능한 한 작은 수로 만드는 x를 식에 대입하여 모르는 계수를 구함.
다음 식이 x에 관한 항등식일 때, a, b를 구하여라.
(1) a(x + 2)2 - b(x + 3) - c + 1 = 2x2 + 5x + 6
(2) a(x - 1)2 + b(x - 1) + 2c = 3x + 5
(1)번은 계수비교법으로 풀어보죠. 일단 전개를 해서 동류항 정리를 해야겠죠?
a(x + 2)2 - b(x + 3) - c + 1 = 2x2 + 5x + 6
a(x2 + 4x + 4) - bx - 3b - c + 1 = 2x2 + 5x + 6
ax2 + 4ax + 4a - bx - 3b - c + 1 = 2x2 + 5x + 6
ax2 + (4a - b)x + 4a - 3b - c + 1 = 2x2 + 5x + 6
양 변에서 차수가 같은 미지수의 계수가 같아야 하므로 a = 2, 4a - b = 5, 4a - 3b - c + 1 = 6이에요.
a = 2이므로 4a - b = 5에서 b = 3
4a - 3b - c + 1 = 6에 a = 2, b = 3을 대입하면 c = -6
(2)번은 수치대입법으로 풀어보죠. 모르는 계수가 0이 되도록 하는 x = 1이에요. x = 1 대입
a(1 - 1)2 + b(1 - 1) + 2c = 3 + 5
2c = 8
c = 4
그 다음에는 모르는 계수를 0으로 만드는 x는 없어요. 이럴 때는 계산을 쉽게 할 수 있게 계수에 곱해지는 숫자가 작아지도록 x를 대입하는 거예요. x = 0을 대입해보죠. c = 4라는 건 위에서 구했어요.
a(0 - 1)2 + b(0 - 1) + 2 × 4 = 3 × 0 + 5
a - b = -3
이번에는 x = 2를 대입해보죠.
a(2 - 1)2 + b(2 - 1) + 2 × 4 = 3 × 2 + 5
a + b = 3
a - b = -3과 a + b = 3을 연립방정식으로 풀면 a = 0 , b = 3
a = 0, b = 3, c = 4네요.
함께 보면 좋은 글
항등식과 항등식의 성질
나머지정리, 인수정리
방정식 ax + b = 0의 풀이, 부정, 불능