뽑기
순열과 조합 - 순열이란
순열과 조합은 경우의 수 공식 - 대표 뽑기에서 했던 건데 조금 더 자세히 알아볼게요. 순열과 조합은 조금 어려운 내용이라서 공부하기 힘들 거예요. 계산 자체가 어렵다기보다는 순열인지 조합인지 판단하기가 상당히 모호해요. 잘 구별해야 합니다.
어렵긴 하지만 양이 많지는 않으니까 금방 지나가요. 순열은 순서가 중요하고 조합은 순서가 중요하지 않다는 차이만 확실히 이해하시면 돼요.
순열
1부터 5까지 적힌 카드가 한 장씩 있다고 해보죠. 이 중 세 장을 뽑아서 세 자리 숫자를 만드는 방법의 경우의 수를 구해볼까요?
- 백의 자리 카드를 뽑을 때는 1 ~ 5중 한 장을 뽑을 수 있어요. 총 다섯 가지
- 십의 자리 카드를 뽑을 때는 ① 뽑은 카드를 제외한 네 장중 하나를 뽑을 수 있어요. 네 가지
- 일의 자리 카드를 뽑을 때는 ①, ②에서 뽑은 카드를 제외한 세 장중에서 하나를 뽑을 수 있어요. 세 가지
연달아 일어나는 사건이므로 곱의 법칙을 이용하면 다섯 장의 카드 중 세 장의 카드를 뽑아서 숫자를 만드는 방법은 5 × 4 × 3 = 60가지예요.
위 예에서 카드를 뽑아서 순서대로 놓았죠? 바로 이런 걸 순열이라고 해요. 이름 그대로 순서대로 뽑아서 줄을 세우는 걸 순열이라고 하지요.
순열을 기호로 나타낼 때는 순열을 뜻하는 영어 Permutation의 첫 글자 P를 이용해요. n개 중에서 r개를 뽑아서 줄을 세우는 걸 nPr이라고 합니다. 엔피알이라고 읽으세요. P는 대문자로 쓰고 n과 r은 소문자로 쓰는데 크기를 조금 작게 써요.
총 다섯 장의 카드 중에서 세 장을 뽑는 건 5P3이라고 쓰고 오피삼이라고 읽는 거죠.
n가지 중에서 r개를 뽑아 줄을 세우는 경우를 볼까요?
- 첫 번째로 뽑을 때는 n개 중 한 개를 뽑을 수 있어요. n가지
- 두 번째로 뽑을 때는 ①에서 뽑은 한 개를 제외한 (n - 1) 개중 하나를 뽑을 수 있어요. (n - 1)가지
- 세 번째로 뽑을 때는 ①, ②에서 뽑은 걸 제외한 (n - 2) 개중에서 하나를 뽑을 수 있어요. (n - 2) 가지
그럼 r번째로 뽑을 때는 어떨까요? r번째로 뽑을 때는 ①, ②, …, (r - 1)에서 뽑은 걸 제외한 n - (r - 1)개 중에서 하나를 뽑을 수 있어요. n - (r - 1)가지가 되지요.
여기서 r은 개수에요. 그러니까 당연히 0보다 커야겠죠? 그리고 n개 중에서 뽑는 거니까 n보다 클 수는 없어요. n보다 작거나 같지요. 0 < r ≤ n
서로 다른 n개에서 r개를 순서대로 고르는 순열의 수는
(단, 0 < r ≤ n)
nPr은 n부터 1씩 줄여가면서 r개의 숫자를 곱해서 구할 수 있어요.
(n + 1)P3 = 24을 만족하는 n을 구하여라.
(n + 1)P3 = 24
(n + 1)n(n - 1) = 24
n(n2 - 1) = 24
n3 - n - 24 = 0
n에 관한 삼차방정식에요. 조립제법을 이용해서 해를 구해보면 n = 3이 나오네요.
무한도전 일곱 멤버(박명수, 정준하, 유재석, 정형돈, 길, 노홍철, 하하)의 자리 배치를 다시 하려고 한다. 유재석이 가운데인 네 번째 자리에 오도록 자리를 배치할 때 경우의 수를 구하여라.
유재석이 네 번째에 고정되어야 하는군요.
부분집합의 개수를 구할 때 특정 원소를 포함하는 부분집합의 개수를 어떻게 구했나요? 그 원소를 뺀 나머지 원소들의 부분집합을 구한 다음에 거기에 특정 원소를 집어넣으면 되는 거였어요. 즉, 특정 원소를 포함한 부분집합의 개수 = 특정 원소를 포함하지 않는 부분집합의 개수였었죠?
마찬가지로 유재석을 뺀 나머지 여섯 명의 자리 배치를 한 후에 네 번째 자리에 유재석을 끼워 넣고 나머지를 한 자리씩 뒤로 미루면 돼요. 유재석이 없을 때의 경우의 수와 같다는 거지요.
유재석을 뺀 나머지 6명의 자리 배치를 해볼까요? 6명 중에서 6명을 모두 뽑아야 해요. 뽑고 싶지 않은 멤버가 있어도 하차시키지 말고 다 뽑아야 해요.
6명의 멤버 중 6명을 순서대로 뽑아서 줄을 세우는 거니까 6P6이네요. 6부터 1씩 줄이면서 6개의 숫자를 곱하는 거지요.
6P6 = 6 × 5 × 4 × 3 × 2 × 1 = 720
720가지 방법이 있군요. 자리분양 특집 한 번 더 해야겠어요.
함께 보면 좋은 글
합의 법칙, 곱의 법칙
경우의 수 공식 - 대표 뽑기
경우의 수 공식 - 한 줄 세우기
경우의 수, 합의 법칙, 곱의 법칙
연속하여 뽑는 확률의 계산
확률 마지막 편이에요.
이번 글은 조금 어려울 수 있어요. 개념에 대한 이해가 중요합니다. 조금은 천천히 읽어와야 이해가 될 거예요.
초등학교 때 이런 문제 많이 봤을 거예요.
1 ~ 5까지 숫자가 적힌 카드가 있다. 여기서 카드를 세 장 꺼내어 만들 수 있는 수 중 가장 큰 수를 구하여라.
카드를 세 장 꺼내서 만들 수 있는 수 중 가장 큰 수는 543이잖아요.
그런데 카드를 꺼내서 사용하고 다시 넣어서 또 뽑을 수 있다면 어떻게 되나요? 중복해서 뽑는다면 말이죠? 가장 큰 수는 555가 되죠?
이렇게 뽑기를 하는데, 꺼낸 다음에 다시 넣는 경우와 넣지 않는 경우에 확률이 달라져요. 어떻게 달라지는지 알아보죠.
연속하여 뽑는 경우의 확률
뽑은 것을 다시 넣는 경우
뽑기를 하는데, 한 번 뽑았던 걸 다시 넣어서 뽑는 경우예요.
주머니에 빨간색 공 3개와 파란색 공 2개가 있어요. 이 주머니에서 공을 하나 뽑아서 색을 확인한 다음에 공을 주머니에 다시 넣고 공을 하나 더 뽑는다고 하죠. 뽑은 공의 색이 둘 다 빨간색일 확률을 구해볼까요?
문제에서 제일 중요한 부분은 뽑은 공의 색을 확인하고 다시 넣는 거예요. 공은 총 다섯 개예요. 두 번째 공을 뽑을 때도 마찬가지고요.
처음으로 공을 뽑을 때 빨간색 공을 뽑을 확률은 3 ÷ 5 =
두 번째 공을 뽑을 때 빨간색 공을 뽑을 확률도 마찬가지로 3 ÷ 5 =
처음도 빨간색이고 두 번째고 빨간색이어야 하므로 두 확률을 곱해야 해요. 이네요.
뽑기를 하는데, 뽑았단 걸 다시 넣으면 처음이나 나중이나 조건이 똑같아요. 위에서는 공의 총 개수와 빨간색, 파란색 공의 개수라는 조건이 같죠.
그래서 처음 뽑나 나중에 뽑나 그 확률이 같아집니다.
뽑은 것을 다시 넣지 않는 경우
이번에는 한 번 뽑은 건 다시 넣지 않을 때 어떻게 되는지 알아보죠.
주머니에 빨간색 공 3개와 파란색 공 2개가 있어요. 이 주머니에서 공을 두 개 뽑을 때 뽑은 공의 색이 둘 다 빨간색일 확률을 구해볼까요?
위에서 했던 문제와 같은 데 딱 하나가 달라요. 위에서는 처음에 뽑은 공의 색을 확인하고 다시 넣었잖아요. 이번에는 뽑은 공을 넣지 않고 바로 새 공을 뽑는 거예요.
일단 처음에 공을 뽑을 때는 전체 공의 수가 5개고, 빨간색 공은 3개에요. 따라서 빨간색 공을 뽑을 확률은 3 ÷ 5 =
두 번째 공을 뽑을 때는 앞에서 공을 하나 뺐으니까 전체 공의 수가 4개예요. 여기서 중요해요.
만약에 첫 번째 공이 파란색이라면 주머니 속에는 빨간색 공 3개, 파란색 공 1개가 남아있겠죠? 따라서 두 번째 뽑은 공이 빨간색일 확률은 3 ÷ 4 = 이에요.
이번에는 반대로 첫 번째 공이 빨간색이라면 주머니 속에는 빨간색 공 2개, 파란색 공 2개가 남아있겠죠? 그래서 두 번째 뽑은 공이 빨간색일 확률은 2 ÷ 4 = 이에요.
문제에서 구하는 건 둘 다 빨간색이어야 하니까 첫 번째 공이 빨간색이었다는 가정 하에 구한 을 선택합니다.
결국, 첫 번째 공이 빨간색일 확률 과 첫 번째 공이 빨간색일 때 두 번째 공이 빨간색일 확률
을 곱해야 문제에서 원하는 답을 구할 수 있는 거예요.
뽑은 것을 다시 넣지 않은 경우에는 처음의 조건과 그다음 조건이 달라져요. 위에서는 공의 총 개수가 달라졌지요.
그리고 앞선 순서에서 뽑은 게 어떤 것인지에 따라서 다음 순서에서의 확률이 달라져요. 위에서는 첫 번째 공이 빨간색인지 파란색인지에 따라서 두 가지 경우가 나왔잖아요. 이건 문제에 따라 어떤 경우가 맞는 건지 잘 골라야 해요.
연속하여 뽑는 경우의 확률
뽑은 것을 다시 넣을 때: 처음과 나중의 조건이 같다.
뽑은 것을 다시 넣지 않을 때: 처음과 나중의 조건이 다르다. → 앞선 순서에 뽑은 것이 다음 순서의 확률에 영향을 줌.
1 ~ 5까지의 자연수가 적힌 카드가 있다. 이 중에서 2장의 카드를 뽑을 때 다음을 구하여라.
(1) 첫 번째 카드를 뽑아 숫자를 확인한 다음 카드를 넣고 다시 한 장을 뽑을 때 둘 다 홀수일 확률
(2) 첫 번째 카드를 뽑고 바로 두 번째 카드를 뽑을 때 둘 다 홀수일 확률
(1)은 뽑은 카드를 다시 넣고 (2)번은 뽑은 카드를 다시 넣지 않는군요.
(1)은 카드를 다시 넣기 때문에 첫 번째 카드와 두 번째 카드에서의 조건이 달라지지 않아요. 즉 카드의 총 개수가 5장으로 같지요. 홀수인 카드도 1, 3, 5로 같아요. 따라서 첫 번째 카드가 홀수일 확률과 두 번째 카드가 홀수일 확률이 3 ÷ 5 = 으로 같아요.
둘 다 홀수여야 하므로 "동시에"라는 개념이 들어있죠? 따라서 두 확률을 곱하면 답이 되겠네요.
(2)는 카드를 넣지 않고 다음 카드를 또 뽑아요. 그래서 조건이 달라지죠.
첫 번째 카드는 총 5장의 카드 중에서 1, 3, 5의 세 장의 홀수 카드가 있으므로 3 ÷ 5 = 이에요.
첫 번째 카드가 홀수라면 두 번째 카드를 뽑을 때 카드 총 수는 4장이 되고, 홀수인 카드는 2장이 되겠죠. 따라서 두 번째 카드가 홀수일 확률은 2 ÷ 4 = 이에요.
두 카드가 모두 홀수일 확률은 이군요.
함께 보면 좋은 글
확률, 확률의 뜻, 확률 공식
확률의 성질, 여사건의 확률
확률의 계산, 확률의 덧셈, 확률의 곱셈
경우의 수 공식 - 대표 뽑기
여러 가지 경우의 수 공식 두 번째입니다.
이번 글에서는 다룰 내용은 뽑기인데요. 여러 물건 중에서 하나 또는 그 이상을 선택하는 거에요.
경우의 수 공식 - 한 줄 세우기에서 했던 한 줄 세우기와 다른 점은 줄 세우기는 여러 개가 있으면 그 여러 개를 다 사용하는 경우고, 뽑기는 여러 개 중에서 일부만 사용하는 거에요.
뽑기에도 공식이 있어요. 어렵지 않은 공식이니까 어떻게 유도되는지 잘 이해해보세요.
경우의 수 공식 - 순서대로 뽑기
순서대로 뽑기는 한 줄 세우기 + 뽑기에요. 그러니까 경우의 수 공식 - 한 줄 세우기에 대해서 알고 있어야 해요.
여러 개의 항목이 있는데, 그중에서 정해진 개수만큼만 뽑아요. 그런데 순서가 있어요. 첫 번째로 뽑는 것과 두 번째로 뽑는 게 서로 다른 역할을 하는 거지요.
1 ~ 5까지의 자연수가 있는데, 이 중에서 세 개를 뽑아서 세 자리 자연수를 만드는 경우의 수는 몇 가지나 되는지 알아보죠. 세 자리의 자연수니까 백의 자리까지 있는 수에요.
- 백의 자리에 올 수는 1 ~ 5중에 아무거나 하나를 사용할 수 있어요. - 경우의 수 5
- 십의 자리에 올 수 있는 수는 백의 자리에서 뽑은 숫자 하나를 제외한 4개 중 고를 수 있어요. - 경우의 수 4
- 일의 자리 숫자는 백의 자리, 십의 자리에 뽑은 숫자를 제외한 3개 중에서 고를 수 있어요. - 경우의 수 3
숫자를 뽑는데 뽑는 순서에 따라 백의 자리, 십의 자리, 일의 자리로 그 역할이 달라요. 따라서 뽑는 순서가 중요하죠.
백의 자리, 십의 자리, 일의 자리를 각각 뽑는 경우의 수를 구했어요. 이 과정은 동시에 일어나니까 곱의 법칙을 이용해야겠죠? 5 × 4 × 3 = 60가지 경우가 있네요.
이걸 공식으로 표현해보죠. 전체 n개 중에서 a개를 뽑는 경우의 수예요.
위 문제에서는 1 ~ 5까지 총 5개의 숫자 중에서 3개를 뽑는 거였어요. 5, 4, 3, 2, 1 이렇게 숫자를 하나씩 줄여가면서 곱하는데, 3개를 뽑는 거니까 앞에 있는 숫자 3개만 곱해서 5 × 4 × 3 = 60이 된 거죠.
학급 인원 30명 중에서 2학기 반장과 부반장, 회장, 부회장을 각각 한 명씩 뽑으려고 한다. 이때 반장과 부반장, 회장, 부회장을 뽑을 수 있는 경우의 수를 구하여라.
위에서 했던 방법대로 해볼까요?
- 30명 중에서 한 명을 반장으로 뽑아요. - 경우의 수는 30
- 반장으로 뽑힌 학생을 제외한 29명 중에서 부반장을 뽑아요. - 경우의 수 29
- 반장, 부반장으로 뽑힌 학생을 제외한 28명 중에서 회장을 뽑아요. - 경우의 수 28
- 반장, 부반장, 회장으로 뽑힌 학생을 제외한 27명 중에서 부회장을 뽑아요. - 경우의 수 27
반장, 부반장, 회장, 부회장을 뽑는 건 동시에 일어나는 사건이니까 곱의 법칙을 이용해요.
30 × 29 × 28 × 27 = 657,720 가지 방법이 있네요.
이번에는 공식으로 풀어보죠. 학급의 학생 수가 30명이니까 n = 30이고 반장, 부반장, 회장, 부회장 총 네 명을 뽑으니까 a = 4에요.
30에서 숫자를 하나씩 줄여서 곱하는데 앞에서부터 4개를 곱하니까 30 × 29 × 28 × 27이라는 식이 나와요.
공식을 이용하면 훨씬 쉽게 구할 수 있겠죠?
눈에 확 띄는 예를 들다 보니 숫자가 커졌는데, 대개는 암산으로 가능한 정도의 계산만 나와요. 다섯 명에서 두 명을 뽑는다던가 하는 정도의 수준이에요.
경우의 수 공식 - 순서 없이 뽑기
이번에는 순서에 상관없이 뽑는 경우예요. 뽑는 순서가 중요하지 않아요.
학급 인원 30명 중에서 주번 2명을 뽑는 경우의 수를 알아볼까요?
앞에서는 회장, 부회장이라는 역할의 차이가 있으니까 뽑는 순서에 따라 그 결과가 달라졌어요. 그런데 이번처럼 주번을 뽑을 때는, 먼저 뽑히든 나중에 뽑히든 그냥 둘 다 주번으로 역할이 같아요. 순서는 아무런 의미가 없지요.
- 30명 중에서 한 명을 주번으로 뽑아요. - 경우의 수는 30
- 앞에서 주번으로 뽑힌 학생을 제외한 29명 중에서 주번을 뽑아요. - 경우의 수 29
두 사건은 동시에 일어나는 사건이니까 곱의 법칙을 30 × 29 = 870가지 경우가 있어요.
여기서 한 가지 주의해야 할 게 있어요. 1단계 30명 중에서 뽑을 때는 영철이가, 2단계 29명 중에서 뽑을 때는 철수가 뽑혔다고 해보죠. 그런데 1단계 30명 중에서 뽑을 때 철수가 뽑히고, 2단계 29명 중에서 뽑을 때 영철이가 뽑힌 것과 다른 게 있나요? 영철이가 첫 번째에서 뽑히든 두 번째에서 뽑히든 아무 상관이 없어요. 마찬가지로 철수가 첫 번째에서 뽑히든 두 번째에서 뽑히든 어차피 똑같은 주번인 거죠.
위에서 구했던 30 × 29에는 이처럼 결과적으로 똑같은 경우가 2개씩 들어있는 거에요. 따라서 30 × 29에 ÷ 2를 해줘야 우리가 구하는 경우의 수가 됩니다.
만약에 주번을 3명 뽑는다면 그럼 3으로 나눠주면 될까요? 그것도 아니에요. 3명이 뽑히는 경우의 수는 3 × 2 × 1이기 때문에 6으로 나눠줘야 해요. 위에서는 그냥 2가 아니라 2 × 1 로 나눠준 거에요.
공식으로 표현해보지요.
전체 n개 중에서 a개를 뽑는데 순서와 상관없이 뽑는다면 분자는 n에서 1씩 줄여가면서 곱하는데 a개만큼 곱해주고, 분모는 a를 숫자를 1씩 줄여가며 곱해주는 거에요.
사과, 배, 감, 귤, 포도, 수박의 과일이 있다. 이 중에서 세 가지를 사려고 할 때 경우의 수는 얼마인가?
바로 공식에 대입해보죠.
과일의 수는 6개로 n = 6, 세 가지를 산다고 했으니까 a = 3이에요. 분자는 6에서 숫자를 1씩 줄이면서 곱하는데 앞의 3개만 곱하고, 분모는 3부터 숫자를 1씩 줄여서 곱해요
만약에 과일을 네 가지를 산다고 한다면 아래처럼 구할 수 있겠네요. n = 6, 네 가지를 산다고 했으니까 a = 4예요. 분자는 6에서 숫자를 1씩 줄이면서 곱하는데 앞의 4개를 곱하고, 분모는 4부터 숫자를 1씩 줄여서 곱해요.
함께 보면 좋은 글
경우의 수, 합의 법칙, 곱의 법칙
경우의 수 공식 - 한 줄 세우기
확률, 확률의 뜻, 확률 공식
확률의 성질, 여사건의 확률