1. 두 다항식 A = x2 + 2, B = x - 1에 대하여 A + 2B는?
① x2 - x + 1 ② x2 + x + 1 ③ x2 + 2x ④ x2 + 2x + 4
그냥 그대로 대입해서 푸는 문제예요.
A + 2B
= x2 + 2 + 2(x - 1)
= x2 + 2 + 2x - 2
= x2 + 2x
답은 ③번입니다.
[고등수학/고1 수학] - 다항식의 덧셈과 뺄셈, 다항식의 곱셈
2. 등식 (x - 1)2 + 2(x - 1) + a = x2이 x에 대한 항등식일 때, 상수 a의 값은?
① 1 ② 2 ③ 3 ④ 4
항등식은 미지수에 어떤 값을 대입해도 항상 성립하는 등식이에요.
양변을 전개해서 각 계수를 비교해서 값을 구할 수도 있고요, x에 특정한 값을 대입해서 계수를 구할 수도 있어요. 여기서는 x = 1을 대입하면 좌변의 (x - 1)이 없어지고 a만 남으니 이 방법을 이용해보죠.
(x - 1)2 + 2(x - 1) + a = x2
(1 - 1)2 + 2(1 - 1) + a = 12
a = 1
바로 구할 수 있네요. ①번이 답입니다.
[고등수학/고1 수학] - 미정계수법 - 계수비교법, 수치대입법
3. 다음은 조립제법을 이용하여 다항식 x3 + x2 - x + 1을 일차식 x - 2로 나누었을 때, 몫과 나머지를 구하는 과정이다. 나머지 R의 값은?
① 2 ② 5 ③ 8 ④ 11
R 바로 위에 있는 두 수를 더해주면 돼요. 1 + 10 = 11
답은 ④번입니다.
[고등수학/고1 수학] - 조립제법 1 - 조립제법 하는 법
4. 1 + 2i - (3 - i) = -2 + ai일 때, 실수 a의 값은? (단, i = )
① -3 ② -2 ③ 2 ④ 3
복소수를 계산할 때는 실부부분은 실수부분끼리, 허수부분은 허수부분끼리 해요. 두 복소수가 같으려면 실수부분끼리 같고, 허수부분끼리 같아야 하죠.
1 + 2i - (3 - i) = -2 + ai
1 + 2i - 3 + i = -2 + ai
(1 - 3) + (2i + i) = -2 + ai
-2 + 3i = -2 + ai
허수 부분끼리 같으려면 a = 3이어야 하니까 답은 ④번입니다.
5. -2 ≤ x ≤ 1일 때, 이차함수 = (x + 1)2 + 3의 최솟값은?
① 1 ② 3 ③ 5 ④ 7
x의 범위안에 꼭지점의 x좌표가 들어있으면 이차함수의 최대값과 최솟값은 꼭지점에서 구할 수 있어요. 꼭짓점의 x좌표가 x = -1로 주어진 x의 범위 -2 ≤ x ≤ 1에 들어있으므로 최솟값은 (-1, 3)에서 y = 3이라는 걸 알 수 있어요.
답은 ②번입니다.
[고등수학/고1 수학] - 이차함수의 최댓값과 최솟값, 이차함수의 최대최소
6. 이차부등식 (x - 1)(x - 2) ≤ 0의 해는?
① -2 ≤ x ≤ -1 ② x ≤ -2 또는 x ≥ -1 ③ 1 ≤ x ≤ 2 ④ x ≤ 1 또는 x ≥ 2
이차부등식의 좌변이 인수분해가 되어 있으면 답을 구하기 쉬워요.
좌변이 우변의 0보다 작거나 같으면 좌변을 0이 되게 하는 두 수의 사이가 부등식의 해예요.
좌변을 0이 되게하는 두 수는 1, 2이므로 이 둘 사이인 1 ≤ x ≤ 2가 이 부등식의 해입니다.
답은 ③번이네요.
[고등수학/고1 수학] - 이차부등식, 이차부등식의 해
7. 좌표평면 위의 두 점 A(-4, 2), B(2, 10) 사이의 거리는?
① 8 ② 10 ③ 12 ④ 14
좌표평면 위의 두 점 사이의 거리 공식에 대입해보죠.
답은 ②번입니다.
[고등수학/고1 수학] - 두 점 사이의 거리, 좌표평면위의 두 점 사이의 거리
8. 직선 y = 2x + 1에 평행하고, 점 (0, 3)을 지나는 직선의 방정식은?
① y = 2x ② y = 2x + 3 ③ y = 3x ④ y = 3x + 3
두 직선이 평행하면 기울기가 같아요. 따라서 y = 2x + 1에 평행한 직선의 방정식의 기울기도 2입니다
이 직선이 (0, 3)을 지나니까 기울기가 2이고 (0, 3)을 지나는 직선을 구하면 되겠네요.
공식에 넣어보죠.
y - y1 = a(x - x1)
y - 3 = 2(x - 0)
y = 2x + 3
답은 ②번입니다.
[고등수학/고1 수학] - 직선의 방정식, 직선의 방정식 구하기
9. 중심의 좌표가 (2, 1)이고, x축에 접하는 원의 방정식은?
① (x - 1)2 + (y - 2)2 = 1 ② (x - 1)2 + (y - 2)2 = 4 ③ (x - 2)2 + (y - 1)2 = 1 ④ (x - 2)2 + (y - 1)2 = 4
x축에 접하는 방정식이니까 반지름 r이 중심의 y좌표와 같아요. r = 1
중심의 좌표가 (a, b)이고 반지름이 r인 원의 방정식은 (x - a)2 + (y - b)2 = r2
(x - 2)2 + (y - 1)2 = 12
답은 ③번입니다.
10. 좌표평면 위의 점 (3, 2)를 y축에 대하여 대칭이동한 점의 좌표는?
① (-3, -2) ② (-3, 2) ③ (2, 3) ④ (3, -2)
좌표평면 위의 점을 y축에 대하여 대칭이동하면 x 좌표의 부호는 반대로, y 좌표의 부호는 그대로예요.
(3, 2) → (-3, 2)
답은 ②번입니다.
[고등수학/고1 수학] - 점과 도형의 대칭이동 - x축, y축, 원점에 대하여 대칭이동