cosine

코사인법칙 두 번째 제2 코사인법칙이에요.

제2 코사인법칙은 제1 코사인법칙의 확장판이에요. 따라서 제1 코사인법칙에 대해서 알고 있어야 하고 증명도 할 줄 알아야 해요.

이 글에서는 제2 코사인법칙을 유도해보고 제2 코사인법칙을 활용해서 문제도 풀어볼 거예요. 제2 코사인법칙이 무엇을 의미하는지 어떤 경우에 제2 코사인법칙을 이용해서 문제를 푸는지 잘 기억해두세요.

제2 코사인법칙 증명

제2 코사인법칙을 보기 전에 먼저 제1 코사인법칙부터 볼까요?

  • a = bcosC + ccosB
  • b = ccosA + acosC
  • c = acosB + bcosA

세 개의 식이 있는데 각각의 식에 좌변에 있는 항목(a, b, c)을 양변에 곱해보죠.

  • a2 = abcosC + cacosB …… ①
  • b2 = bccosA + abcosC …… ②
  • c2 = cacosB + bccosA …… ③

순서대로 ①식, ②식, ③식이라고 해보죠.

① - ② - ③을 하면

a2 - b2 - c2 = abcosC + cacosB - (bccosA + abcosC) - (cacosB + bccosA)
a2 - b2 - c2 = -2bccosA
a2 = b2 + c2 - 2bccosA

② - ③ - ①을 하면

b2 - c2 - a2 = bccosA + abcosC - (cacosB + bccosA) - (abcosC + cacosB)
b2 - c2 - a2 = -2cacosB
b2 = c2 + a2 - 2cacosB

③ - ① - ②를 하면

c2 - a2 - b2 = cacosB + bccosA - (abcosC + cacosB) - (bccosA + abcosC)
c2 - a2 - b2 = -2abcosC
c2 = a2 + b2 - 2abcosC

제2 코사인법칙
a2 = b2 + c2 - 2bccosA
b2 = c2 + a2 - 2cacosB
c2 = a2 + b2 - 2abcosC

제2 코사인법칙 - 삼각형ABC

일단 첫 번째 공식만 보죠. a2 = b2 + c2 - 2bccosA

각 항을 보면 a, b, c라는 세 변의 길이와 A라는 한 각의 크기로 되어 있어요. 세 변과 한 각 사이의 관계를 나타내는 식이죠.

b, c라는 두 변의 길이와 A의 각의 크기를 알면 나머지 한 변인 a를 구할 수 있어요. 여기서 A는 어떤 각인가요? a의 대변이자 b, c 사이의 끼인각이죠? 즉 두 변의 길이와 그 끼인각의 크기를 알면 끼인각의 대변의 길이를 구할 수 있다는 거예요.

조금 돌려서 얘기해볼까요?

a, b, c 세 변의 길이를 알면 어떨까요? cosA를 구할 수 있죠? 만약에 cosA가 우리가 외우고 있는 삼각비라면 A도 구할 수 있다는 얘기예요.

다음을 구하여라.
(1) a = 2cm, b = 3cm, C = 60°일 때, c
(2) a = 3cm, b = 3cm, c = 3cm일 때, A

(1) 두 변의 길이와 그 끼인각의 크기를 알려줬네요. 공식에 대입해보죠.

(2) 세 변의 길이를 알려주고 한 각의 크기를 구하라고 했어요. 코사인법칙은 세 변의 길이와 한 각의 관계를 나타내는 식이니까 공식을 이용해서 각을 구할 수 있어요.

A = 45°

함께 보면 좋은 글

사인법칙, 사인법칙 증명
코사인법칙, 제1코사인법칙 증명
삼각방정식, 삼각방정식 푸는 방법
삼각부등식, 삼각부등식 푸는 법
삼각함수 그래프 그리는 법 - sin 그래프, 주기함수

정리해볼까요

제2 코사인법칙

  • a2 = b2 + c2 - 2bccosA
  • b2 = c2 + a2 - 2cacosB
  • c2 = a2 + b2 - 2abcosC
<<     고1 수학 목차     >>
 
그리드형

사인법칙에 이어 코사인법칙이에요. 코사인법칙은 두 개가 있는데 이 글에서는 제1 코사인법칙에 대해서 알아볼 거예요.

제1 코사인법칙은 그리 많이 사용하는 법칙은 아니에요. 그렇다고 전혀 사용하지 않는 것도 아니고 특히 다음에 공부할 제2 코사인법칙을 유도하는 과정에서 꼭 필요하기 때문에 반드시 알아야 하는 법칙입니다.

공식의 모양이 특징을 가지고 있어서 모양만 잘 보면 금방 외울 수 있어요.

코사인법칙

사인법칙은 세 변의 길이와 세 각의 sin, 외접원의 반지름 사이의 관계였어요. 코사인법칙은 한 변의 길이와 다른 두 변, 그 대각 사이의 관계를 나타내는 식이에요.

△ABC의 세 각을 A, B, C라고 하고, 그 대변을 a, b, c라고 할 때 다음의 성질이 성립해요.

△ABC의 세 각을 A, B, C라 하고 그 대변을 a, b, c라고 할 때
a = bcosC + ccosB
b = ccosA + acosC
c = acosB + bcosA

코사인법칙을 잘 보면 a를 구할 때 b와 cosC를 곱한 것에 c와 cosB를 곱한 걸 더해주는 거예요. 두 각의 크기와 그 대변의 길이를 알 때 다른 한 변의 길이를 구하는 공식이지요. 두 변의 길이와 두 각의 cos을 교차로 곱해주는 게 특징이에요.

증명해 볼까요? a = bcosC + ccosB부터 증명해보죠. C를 이용해서 증명할 거예요.

코사인법칙 증명 - 예각일 때

첫 번째 c가 예각일 때에요.

코사인법칙 증명 - 예각일 때

 

A에서 에 수선을 내리고 수선의 발을 H라고 해보죠.

a =  + 에요.

cosB와 cosC를 이용해서 의 길이를 구해보죠.

△ABH에서

△ACH에서

결국 a =  +  = bcosC + ccosB라는 걸 알 수 있어요.

코사인법칙 증명 - 직각일 때

이번에는 C가 직각일 때에요.

코사인법칙 증명 - 직각일 때

 

C가 직각이면 따로 보조선을 그을 필요가 없어요.

cosC = cos90° = 0 → bcosC = 0

a = bcosC + ccosB가 성립해요.

코사인법칙 증명 - 둔각일 때

C가 둔각일 때에요.

코사인법칙 증명 - 둔각일 때

 

A에서 의 연장선에 수선을 내리고 수선의 발을 H라고 해보죠.

a =  - 에요.

cosB와 cosC를 이용해서 의 길이를 구해보죠.

△ABH에서

△ACH에서

a =  -  = ccosB + bcosC

세 경우를 통해서 C의 크기와 상관없이 a = bcosC + ccosB가 성립하는 걸 알 수 있어요. C가 아니라 A, B의 각을 바꿔가면서 같은 방법으로 증명하면 b = ccosA + acosC, c = bcosA + acosB가 성립하는 걸 확인할 수 있어요.

△ABC에서 A = 30°, B = 45°, a = 6cm일 때, b, c, C를 구하여라.

코사인법칙을 이용하려면 두 각의 크기와 그 대변의 길이를 알아야 해요. 하지만 문제에서는 한 변의 길이와 두 각의 크기를 알려줬어요. 두 각은 길이를 아는 변의 양 끝각이 아니네요.

일단 남은 한 각의 크기를 구해보죠. C = 180° - (30° + 45°) = 105°네요.

세 각의 크기를 알았어요. 원래 한 변의 길이는 알고 있으니 결국 한 변의 길이와 양 끝각의 크기를 알게 된 거죠. 그러면 사인법칙을 이용할 수 있지요.

sin105°를 우리는 외우고 있지 않죠? 물론 삼각함수표를 사용하면 그 값을 알 수 있지만 외우고 있지는 않아요. 그렇다고 c를 구할 수 없는 건 아니에요. 이제 두 각의 크기(A, B)와 그 대변의 길이(a, b)를 알고 있으니까 코사인법칙을 이용해서 구하면 돼요.

함께 보면 좋은 글

사인법칙, 사인법칙 증명
삼각방정식, 삼각방정식 푸는 방법
삼각부등식, 삼각부등식 푸는 법
삼각함수를 포함한 식의 최댓값과 최솟값
삼각함수 그래프 그리는 법 - sin 그래프, 주기함수

정리해볼까요

△ABC의 세 각을 A, B, C라 하고 그 대변을 a, b, c라고 할 때

  • a = bcosC + ccosB
  • b = ccosA + acosC
  • c = acosB + bcosA
<<     고1 수학 목차     >>
 
그리드형

삼각비, sin, cos, tan

2012. 10. 2. 17:00

피타고라스의 정리에 이어 이번에는 삼각비입니다.

피타고라스의 정리는 직각삼각형에서 세 변의 길이 사이의 관계였어요. 삼각비도 직각삼각형에서 변의 길이에 관한 내용입니다. 단순히 변의 길이가 아니라 변의 길이 사이의 비율에요.

피타고라스의 정리에서는 길이의 관계만 따졌는데, 삼각비는 각도에 관한 내용이 추가되었어요.

삼각비도 직각삼각형에서 구하는 거라서 피타고라스의 정리와 비슷한 부분이 조금 있지만 조금 더 어려운 내용이 나옵니다. 하지만 그 비율이라는 게 일정한 값을 가지고 있기때문에 복잡한 계산을 요구하지는 않으니 너무 걱정하지는 마세요.

삼각비

삼각비는 직각삼각형에서 두 길이의 비를 얘기해요. 꼭 직각삼각형이어야만 합니다. 직각삼각형이 아니면 안 돼요.

삼각비를 구할 때는 기준각이라는 게 있어요. 어떤 각을 하나 주고 그 각에 대한 삼각비를 구하는 거지요. 삼각비는 이 기준각의 크기에 따라 달라집니다. 변의 길이나 삼각형의 크기와 상관없이 기준각이 같으면 서로 다른 직각삼각형이라도 삼각비는 같아요. 이건 설명이 너무 길어져서 생략합니다. 그냥 이렇게만 알고 계시면 돼요.

직각삼각형에서 직각의 대변은 빗변이에요. 그리고 기준각의 대변을 높이로 남은 한 변을 밑변으로 부르기로 약속을 했어요. + 기호 양쪽에 있는 값을 서로 더한다고 약속한 것처럼 그냥 그렇게 딱 정했어요.

삼각비

sin

sin이에요. 원래는 sine인데, 앞의 세 자만 따서 sin이라고 써요. 한글로 쓰면 사인인데, 읽을 때는 싸인이라고 읽습니다.

sin은 직각삼각형 두 변의 길이 중 빗변과 높이의 길이의 비예요.

기준각을 A라고 하면 로 구합니다.

cos

cos이에요. 원래는 cosine인데, 앞의 세 자만 따서 cos이라고 써요. 한글로 쓰면 코사인인데, 읽을 때는 코싸인이라고 읽습니다.

cos은 직각삼각형 두 변의 길이 중 빗변과 밑변의 길이의 비예요.

기준각을 A라고 하면 으로 구합니다.

tan

tan에요. 원래는 tangent인데, 앞의 세 자만 따서 tan이라고 써요. 탄젠트라고 쓰고 읽어요.

tan은 직각삼각형 두 변의 길이 중 밑변과 높이의 길이의 비예요.

기준각을 A라고 하면 로 구합니다.

각의 기호로 썼는데요. 각의 크기로 쓰기도 합니다. 기준각의 크기가 60°이면 sin60°라고 쓰기도 해요. 그럼 그림에서 각의 크기가 60°인 각을 찾아서 그 각을 기준각으로 삼으면 되죠. cos60°, tan60°도 마찬가지고요.

삼각비: 직각삼각형에서 두 변의 길이의 비
sin = , cos = , tan  =

삼각비를 쉽게 구하는 방법

삼각비를 쉽게 구하려면 삼각형을 원하는 모양으로 그려야 해요. 기준각이 왼쪽 아래에, 직각은 오른쪽 아래에 오게 삼각형을 그려요.

삼각비 구하기

그리고 영어 s, c, t의 필기체를 쓰는 거지요. 영어 소문자 필기체 쓸 줄 알죠?

영어 소문자 필기체

s는 sin, c는 cos, t는 tan를 구할 때 써요. s와 t는 1, 2번만 있으면 돼요.

sin, cos, tan

삼각형을 위 그림처럼 돌려놓은 다음에 필기체를 쓰면 먼저 써지는 게 분모, 나중에 써지는 게 분자가 되는 거예요. sin의 s는 빗변에서 출발해서 높이로 이어지지요. 그래서 sin은 가 되는 거예요. cos의 c는 빗변에서 출발해서 밑변으로 이어지니까 cos은 , tan의 t는 밑변에서 시작해서 높이로 이어지니까 가 되는 거고요.

다음 직각삼각형 ABC에서 각 A에 대한 삼각비를 구하여라.

삼각비를 구하려면 빗변의 길이를 알아야 해요. 직각삼각형이니까 빗변의 길이는 피타고라스의 정리를 이용해서 구할 수 있어요. 피타고라스의 수 3, 4, 5니까 빗변의 길이는 5에요.

함께 보면 좋은 글

특수한 각의 삼각비, 30°,45°, 60°
예각의 삼각비, 0°와 90°의 삼각비
삼각비표, 삼각비표 보는 법
직각삼각형 변의 길이 - 삼각비 이용
일반 삼각형 변의 길이 구하기

정리해볼까요

삼각비

  • 직각삼각형에서 두 변의 길이의 비
  • sin =
  • cos =
  • tan =
 
그리드형

+ 최근글