히스토그램

상대도수의 그래프

2012. 7. 15. 12:30

상대도수의 분포표는 도수분포표에서 도수가 상대도수로 바뀐 것뿐이에요. 마찬가지로 상대도수의 그래프는 도수가 상대도수로 바뀐 것 빼고는 히스토그램이나 도수분포다각형과 완전히 다 같아요.

히스토그램은 가로축에 계급의 양 끝값, 세로축에 도수였죠? 상대도수의 그래프는 가로축에 계급의 양 끝값, 세로축에 상대도수를 놓고 그래프를 그리면 돼요.

상대도수 그래프 그리기

  1. 가로축에 각 계급의 양 끝값을 적는다.
  2. 세로축에 상대도수를 적는다.
  3. 히스토그램이나 도수분포다각형을 그리는 방법과 똑같은 방법으로 그래프를 그린다.

상대도수 그래프의 특징

상대도수 그래프는 각 계급의 도수가 전체에서 차지하는 비율을 쉽게 알 수 있고, 전체 도수가 다른 자료와 비교할 때 매우 편리해요.

아래는 상대도수와 상대도수의 분포표의 예제 문제에 나왔던 상대도수를 이용하여 그래프로 나타낸 겁니다.

단순히 표에서 숫자를 이용해서 비교할 때보다 그래프로 나와 있으니까 훨씬 더 쉽게 알아볼 수 있겠죠?

상대도수 그래프의 넓이

도수분포다각형에서 그래프와 가로축으로 이루어진 부분의 넓이는 히스토그램의 직사각형의 전체 넓이와 같았어요.

상대도수의 그래프에서는 도수 대신 상대도수를 사용하니까 (계급의 크기) × (상대도수의 총합)이 되는데, 상대도수의 총합은 1이니까 넓이는 계급의 크기와 같죠.

도수분포다각형의 그래프와 가로축 사이의 넓이
     = 히스토그램 직사각형의 전체 넓이
     = (계급의 크기) × (도수의 총합)

상대도수의 그래프에서 그래프와 가로축으로 둘러싸인 넓이
= 계급의 크기

두 학급의 수학 점수를 상대도수 그래프로 나타낸 것이다. 파란색이 1반, 빨간색이 2반을 나타낼 때 물음에 답하여라.
(1) 1반에서 80점 이상 90점 미만인 학생 수가 10명이고 상대도수가 0.5일 때 1반의 전체 학생 수를 구하여라.
(2) 90점 이상인 학생 수의 비율이 더 높은 반은 몇 반인가?

(1)번에서 (상대도수) = (계급의 도수) ÷ (총 도수)에요. 1반의 전체 학생 수를 구하라고 했으니 총 도수를 구하란 말이네요. 식에 대입해 보죠.
0.5 = 10 ÷ x
x = 20
1반의 학생 수는 20명이네요.

(2)번에서는 실제 두 반에서 90점 이상인 학생이 몇 명인지 알 수도 없고, 상대도수도 몰라요. 하지만 그래프를 보면 그 숫자를 알지 못해도 누가 많은지는 알 수 있어요. 90점 이상 100점 미만의 계급에 1반의 선이 조금 더 위로 올라와 있죠? 따라서 90점 이상인 학생의 비율은 1반이 더 높다고 할 수 있겠네요.

함께 보면 좋은 글

히스토그램과 히스토그램의 특징, 히스토그램 그리기
도수분포다각형, 도수분포다각형 그리는 방법
상대도수와 상대도수의 분포표

정리해볼까요

상대도수의 그래프

  • 히스토그램과 도수분포다각형에서 도수 → 상대도수로 바꾼 것과 같다.
  • 가로축에 각 계급의 끝 값, 세로축에 상대도수를 넣는다.
 
그리드형

자료를 표(도수분포표)로 만드는 법, 그림(히스토그램)으로 그리는 법까지 공부해봤어요. 물론 도수분포표와 히스토그램을 분석하고 정보를 찾아내는 것도 해봤고요.

이번에는 두 가지가 아닌 다른 한 가지를 더 공부할 거예요. 그림을 그리는 방법이요.

자료를 여러 가지 방법으로 표현해보면서 각각 어떤 특징이 있는지, 어떤 장점이 있는지를 살펴보죠.

이번에 배울 내용은 도수분포다각형이라는 거예요.

도수분포다각형 그리는 방법

다각형은 각이 여러 개 있는 도형이죠? 도수분포다각형은 자료를 여러 개의 각을 가진 도형으로 표현한 그림을 말해요.

꺾은선 그래프와 닮아있어요.

그럼 도수분포다각형을 어떻게 그리느냐?

  1. 히스토그램을 그리세요.
  2. 히스토그램에서 각 사각형의 윗변의 가운데에 중점을 찍어요. 특히, 계급의 양끝에 도수가 0인 계급이 있다고 생각하여 그곳에도 중점을 찍어요.
  3. 중점을 직선으로 연결하세요.

도수분포다각형을 그리는 것에 익숙해지면 굳이 히스토그램을 그리지 않아도, 계급과 도수가 만나는 곳에 점을 찍어서 그냥 그릴 수도 있겠지요.

도수분포다각형 그리기

도수분포다각형의 특징

그럼 도수분포표도 있고 히스토그램도 있는데, 굳이 또 도수분포다각형이라는 걸 왜 그리는 걸까요? 뭔가 장점이 있으니까 그리겠죠?

도수분포다각형은 변량과 도수의 분포상태를 연속적으로 관찰할 수 있어요. 꺾은선으로 되어있어서 변량과 도수의 분포의 흐름을 연속적으로 판단하기가 쉬워요.

아래에서 빨간색 선만 보면 점수가 어떻게 바뀌는지를 표에서보다 더 알아보기 쉽죠.

또 서로 다른 변량을 이용해서 그린 둘 이상의 도수분포다각형을 한 곳에 겹쳐서 그리면 서로를 비교하기 편리한 장점도 있어요.

도수분포다각형

히스토그램에서는 전체 직사각형의 넓이를 구했더니 어떤 특징이 있었죠? (계급의 크기) × (총 도수)와 같았어요. 도수분포다각형에도 넓이에 특별한 성질이 있어요.

도수분포다각형에서 선과 가로축 사이의 넓이를 구해볼까요? 선이 여러 번 꺾여있어서 넓이를 구하기가 어렵죠? 어떻게 구하냐면, 도수분포다각형 선 밖에 파란색으로 점 찍어진 곳의 넓이와 선 안의 파란색으로 점 찍어진 빈 곳의 넓이가 같아요. 빨간색 점도 그렇고, 녹색 점도 그렇지요.

도수분포다각형의 넓이

결국, 도수분포다각형의 넓이를 구하는 것과 히스토그램의 직사각형의 넓이를 구하는 게 같아요.

도수분포다각형과 가로축으로 둘러싸인 도형의 넓이
     = 히스토그램의 직사각형의 전체 넓이
     = (계급의 크기) × (도수의 총합)

함께 보면 좋은 글

줄기와 잎 그림
도수분포표, 변량, 계급, 계급값, 도수
도수분포표 만드는 법
도수분포표에서의 평균구하기
히스토그램과 히스토그램의 특징, 히스토그램 그리기

정리해볼까요

도수분포다각형

  • 도수의 분포를 다각형 모양으로 나타낸 그래프
  • 도수분포다각형 그리기
    1. 히스토그램을 그린다.
    2. 히스토그램에서 각 사각형 윗변의 가운데에 중점을 찍는다.
      계급의 양끝에 도수가 0인 계급이 있다고 생각하여 중점을 찍는다.
    3. 중점을 선분으로 연결한다.
  • 도수분포다각형의 넓이 = 히스토그램의 직사각형의 전체 넓이 = (계급의 크기) × (총 도수)
<<    중1 수학 목차    >>
 
그리드형

도수분포표에 대해서 알아봤어요. 여러 개의 자료로 표를 만들면 자료의 위치나 흐름 등을 쉽게 파악할 수 있는 장점이 있어요.

이번 글에서 공부할 히스토그램은 도수분포표에서 한 발 더 나가서 표가 아니라 그림으로 그리는 거예요. 그림이 글자보다 직관적이고 이해하기가 쉽잖아요.

히스토그램이 무엇인지, 히스토그램을 어떻게 그리는지 알아보죠.

히스토그램

도수분포표는 아래 표처럼 생겼어요. 왼쪽 칸에는 계급을 쓰고 오른쪽 칸에는 도수를 적지요. 제일 아랫줄에는 도수의 총합을 적어요.

아래는 도수분포표 만드는 법에서 사용한 수학 점수를 도수분포표로 나타낸 거예요.

점수(점) 학생 수(명)
60 이상 ~ 70 미만 1
70 ~ 80 3
80 ~ 90 10
90 ~ 100 6
합계 20

이 도수분포표의 왼쪽에 있는 계급을 가로축에, 오른쪽 칸에 있는 도수를 세로축에 표시해서 직사각형 모양으로 나타낸 그래프가 바로 히스토그램이에요.

히스토그램으로 그리면 아래처럼 생겼어요.

히스토그램

히스토그램 그리는 방법

위에서 설명한 것처럼 히스토그램의 가로축에는 도수분포표에서의 계급의 양 끝값을, 세로축에는 도수를 써요. 눈금과 눈금 사이가 아닌 눈금선이 있는 부분에 계급의 양 끝값과 도수를 써야 해요.

그리고 실제 사용하는 계급 앞과 뒤에 한 칸씩을 더 만드세요.

각 계급을 가로로, 도수를 세로로 하는 직사각형을 그려요. 주의할 건 눈금에 다 채워서 그려야 해요. 옆의 직사각형과 바로 붙도록 그립니다. 아래 그림처럼 직사각형 사이가 서로 떨어져 있으면 안 돼요. 앞의 그림은 제대로 된 히스토그램, 아래 그림은 잘못된 히스토그램입니다.

잘못된 히스토그램

히스토그램의 특징

히스토그램은 그림(그래프)이므로 자료의 분포 상태를 도수분포표보다 좀 더 쉽게 알아볼 수 있어요. 글자보다 그림이 이해하기 쉬운 건 당연하잖아요.

히스토그램에서 한 계급의 직사각형의 넓이를 한 번 구해볼까요? 한 계급에서 가로의 길이는 계급의 크기와 같아요. 세로의 길이는 도수와 같죠. 그래서 직사각형의 넓이는 (계급의 크기) × (계급의 도수)가 되겠죠? 60점 이상 70점 미만의 직사각형의 넓이는 10 × 1 = 10, 70점 이상 80점 미만의 직사각형의 넓이는 10 × 3 = 30 이렇게 구할 수 있죠.

그런데 가로에 있는 계급의 크기는 계급이 달라도 모두 일정해요. 따라서 직사각형의 넓이는 도수에 비례해요.

다음이 중요한 내용인데요. 전체 직사각형의 넓이를 구해볼까요? 각각의 직사각형의 넓이를 다 더하면 되겠죠? 60점 이상 70점 미만은 10, 70점 이상 80점 미만은 30, 80점 이상 90점 미만은 10 × 10 = 100, 90점 이상 100점 미만은 10 × 6 = 60이죠. 10 + 30 + 100 + 60 = 200이네요.

이번에는 (계급의 크기) × (총 도수)를 구해볼까요? 10 × (1 + 3 + 10 + 6) = 10 × 20 = 200이에요. 위에서 구한 직사각형의 넓이와 같죠?

직사각형의 전체 넓이 = {(계급의 크기) × (도수)}의 총합 = (계급의 크기) × (총 도수)

아래 히스토그램을 보고 아래 물음에 답하여라.
(1) 계급값이 85점인 계급의 도수를 구하여라.
(2) 계급값이 95점인 계급의 직사각형의 넓이는 60점 이상 70점 미만인 계급의 직사각형의 넓이의 몇 배인가?
히스토그램

(1)에서 계급값이 85이므로 계급은 80점 이상 90점 미만이 되겠죠? 이 계급에서 막대의 세로가 도수니까 10이네요.

(2)는 계급값이 95점인 계급은 90점 이상 100점 미만인데, 이때의 도수는 6이에요. 60점 이상 70점 미만인 계급의 도수는 1이고요. 넓이는 도수에 비례한다고 했으니까 두 계급의 직사각형의 넓이를 비교할 때는 실제 넓이가 아닌 도수만 비교해도 돼요. 6/1 = 6이라서 넓이는 6배 입니다.

히스토그램과 막대그래프의 차이

히스토그램은 얼핏 보면 막대그래프와 닮았어요. 그런데 왜 막대그래프가 아닌 히스토그램을 그릴까요?

막대그래프는 보통 연속되지 않는 자료들을 그래프로 그릴 때 사용해요. 사과는 몇 개, 수박은 몇 개, 이럴 때 사용하죠. 수박과 사과는 서로 연결할 수 없잖아요.

히스토그램은 60 ~ 70점, 70 ~ 80점, … 처럼 서로 연속된 자료를 나타낼 때 사용합니다. 첫 번째 계급의 끝값인 70점과 두 번째 계급의 70점이 서로 연결되잖아요.

그래프를 보면 가장 눈에 띄는 게 있어요. 히스토그램은 막대가 서로 붙어 있고, 막대그래프는 벌어져 있어요. 위에서 설명한 연속이냐 연속하지 않느냐의 차이 때문에 생기는 건데요. 60 ~ 70, 70 ~ 80은 연속하니까 죽 붙여서 그려야 하는 거지요.

함께 보면 좋은 글

줄기와 잎 그림
도수분포표, 변량, 계급, 계급값, 도수
도수분포표 만드는 법
도수분포표에서의 평균구하기
도수분포다각형, 도수분포다각형 그리는 방법

정리해볼까요

히스토그램이란?

  • 도수분포표의 계급을 가로축에, 도수를 세로축에 표시하여 직사각형 모양으로 나타낸 그래프
  • 도수분포표보다 자료의 분포 상태를 한 눈에 알아볼 수 있다.
  • 직사각형의 전체 넓이 = {(계급의 크기) × (도수)}의 총합 = (계급의 크기) × (총 도수)
 
그리드형

+ 최근글