평행사변형이 되는 조건
사각형의 정의와 성질, 조건
사각형에 대해서 쭉 알아봤어요,
평행사변형, 직사각형, 마름모, 정사각형, 사다리꼴의 정의, 성질, 조건에 알아봤지요.
이 글에서는 이제까지 배웠던 사각형들의 내용을 합치고 정리해볼게요. 비슷한 것도 있고, 같은 것도 있고, 다른 것도 있으니까 잘 비교하고 구별해서 헷갈리지 않도록 하세요.
여기서는 각 사각형의 핵심적인 내용만 추릴 거니까, 자세한 내용이나 증명은 해당 글을 읽으세요.
아래에 표를 보면서 글자로 외우는 것도 좋지만 그림을 보면서 직접 펜으로 찍어가면서 외우세요. 예를 들면 펜으로 그림의 윗변과 아랫변을 가리키면서 "여기랑 여기랑 같고………" 뭐 이런 식으로 말이죠. 도형이니까 실제 도형을 보면서 그림에 맞게 외우는 것이 훨씬 더 좋은 방법이거든요.
여러 사각형의 정의와 성질, 조건
사각형 | [정의]와 성질 | 조건 |
---|---|---|
평행사변형 |
[두 쌍의 대변이 각각 평행한 사각형]
|
|
평행사변형의 성질 | 평행사변형이 되는 조건 | |
직사각형 |
[모든 내각의 크기가 같은 사각형 또는 한 내각의 크기가 90°인 평행사변형]
|
|
직사각형의 성질, 직사각형이 되는 조건 | ||
마름모 |
[네 변의 길이가 모두 같은 사각형]
|
|
마름모의 성질, 마름모가 되는 조건 | ||
정사각형 |
[네 각의 크기가 모두 같고, 네 변의 길이가 모두 같은 사각형]
|
|
정사각형의 성질, 정사각형이 되는 조건 | ||
등변사다리꼴 |
[한 쌍의 대변이 평행하고 밑변의 양 끝각의 크기가 같은 사각형]
|
|
등변사다리꼴의 정의와 성질 |
함께 보면 좋은 글
평행사변형의 성질, 평행사변형의 특징
평행사변형이 되는 조건
직사각형의 성질, 직사각형이 되는 조건
마름모의 성질, 마름모가 되는 조건
정사각형의 성질, 정사각형이 되는 조건
사다리꼴의 정의, 등변사다리꼴의 정의와 등변사다리꼴의 성질
평행사변형이 되는 조건
평행사변형이란?, 평행사변형의 성질에서 평행사변형이 어떤 특징을 가지고 있는지 알아봤어요. 대변과 대각, 대각선에 관한 내용이었지요.
이 글에서는 어떤 사각형이 평행사변형이 되는지 알아볼 거예요. 그리고 왜 그렇게 되는지 증명도 해볼거고요.
평행사변형이 되는 조건은 총 다섯 가지인데, 그중에 네 가지가 평행사변형이란?, 평행사변형의 성질에 나오는 내용이에요. 평행사변형의 성질과 조건이 깊은 관계가 있으니까 잘 비교해보세요.
새로운 내용은 하나밖에 없으니까 그것만 주의 깊게 보면 되겠네요.
평행사변형이 되는 조건
평행사변형이 되는 조건 중에 네 가지가 평행사변형이란?, 평행사변형의 성질에 나오는 거라고 했으니까, 평행사변형의 성질을 다시 정리해보죠.
- 평행사변형은 두 쌍의 대변이 각각 평행한 사각형이라고 정의
- 평행사변형에서 두 쌍의 대변은 길이가 각각 같다.
- 평행사변형에서 두 쌍의 대각은 크기가 각각 같다.
- 평행사변형에서 두 대각선은 서로 다른 대각선을 이등분한다.
평행사변형이 되는 조건은 바로 위 성질을 거꾸로 하면 돼요. 위 성질의 역이 바로 조건이 되는 거죠.
변의 길이가 같거나 각의 크기가 같은 건 합동을 이용해서 증명했어요. 평행사변형이 되는 걸 증명하려면 네 변이 각각 평행하다는 것을 증명해야 하잖아요? 이때는 어떤 성질을 이용해야 할까요? 평행하다는 것을 증명하려면 평행선에서 동위각과 엇각에서 배웠던 것처럼 동위각과 엇각의 크기가 같다는 것을 보여주면 돼요.
두 쌍의 대변이 평행하다.
평행사변형이란?, 평행사변형의 성질에서 평행사변형은 두 쌍의 대변이 서로 평행한 사각형이라고 정의했어요. 이 정의에 따라서 두 쌍의 대변이 평행한 사각형은 평행사변형이 되는 거예요.
두 쌍의 대변의 길이가 각각 같다.
□ABCD에서 점 A와 점 C에 선을 그어보세요. ∠BAC와 ∠DCA가 엇각의 위치에 있어요.
조건에서 두 쌍의 대변의 길이가 같다고 했으니까 =
,
=
에요. 거기에
는 공통이죠. 세 변의 길이가 같으니까 SSS합동으로 △ABC ≡ △CDA가 돼요.
대응각인 ∠BAC와 ∠DCA의 크기는 같은 거죠. 즉, 엇각인 ∠BAC와 ∠DCA가 크기가 같으므로 와
는 평행이에요.
∠BCA와 ∠DAC도 같은 방법으로 증명하면 와
가 평행인 걸 알 수 있어요.
따라서 □ABCD에서 두 쌍의 대변의 길이가 각각 같으면 두 쌍의 대변이 평행하니까 그 사각형은 평행사변형이 되는 거죠. (증명 끝.)
두 쌍의 대각의 크기가 각각 같다.
두 쌍의 대각의 크기가 같다고 했으니까 ∠A + ∠B + ∠C + ∠D = 2(∠A + ∠B) = 360°가 돼요. 즉 ∠A + ∠B = 180°죠. 다시 말해 이웃하는 두 각의 크기의 합은 180°라는 새로운(?) 성질을 알 수 있어요.
□ABCD에서 의 연장선을 긋고, 그 위에 임의의 점 E를 잡아요.
∠EAD와 ∠B는 동위각의 위치에 있어요. 그런데 이웃하는 두 각의 합에 따라 ∠BAD + ∠B = 180°이고, 평각인 ∠EAB = ∠BAD + ∠EAD = 180°에요. ∠BAD + ∠B = ∠BAD + ∠EAD에서 ∠EAD = ∠B임을 알 수 있죠.
∠EAD와 ∠B는 동위각의 위치에 있으면서 크기가 같으니까 와
는 서로 평행이에요.
의 연장선 위에 임의의 점 F를 잡아서 위와 같은 방법을 이용하면
와
도 평행인 걸 증명할 수 있어요.
따라서 □ABCD에서 두 쌍의 대각의 크기가 각각 같으면 두 쌍의 대변이 평행하니까 그 사각형은 평행사변형이 되는 거죠. (증명 끝.)
두 대각선이 서로 다른 것을 이등분한다.
두 대각선의 교점을 점 O라고 할게요. △OAB와 △OCD를 보세요. 대각선이 서로를 이등분한다고 했으니 =
,
=
에요.
맞꼭지각으로 ∠AOB = ∠COD죠. (맞꼭지각, 동위각, 엇각)
그러면 두 삼각형은 SAS 합동이에요. △OAB ≡ △OCD
대응변인 =
가 되죠.
△OAD와 △OCB에서도 같은 방법을 이용하면 =
임을 알 수 있어요.
두 쌍의 대변의 길이가 각각 같으므로 □ABCD는 평행사변형이 되는 거죠. (증명 끝.)
한 쌍의 대변이 평행하고, 그 길이가 같다.
이건 평행사변형의 성질과 직접적인 관련은 없는 거예요. 일단, 한 쌍의 대변이 평행하고 길이가 같다고 했으니 =
,
//
라고 해보죠.
□ABCD에서 점 A와 점 C에 선을 그어요.
△ABC와 △CDA에서 //
이고 엇각이므로 ∠ACB와 ∠CAD는 크기가 같아요.
=
이고
는 공통이므로 SAS 합동이죠. △ABC ≡ △CDA
대응변인 =
가 됩니다.
따라서 두 쌍의 대변의 길이가 같으므로 □ABCD는 평행사변형이 되는 거죠. (증명 끝.)
평행사변형이 되는 조건
두 쌍의 대변이 평행하다. - 평행사변형의 정의
두 쌍의 대변의 길이가 각각 같다.
두 쌍의 대각의 크기가 각각 같다.
두 대각선이 서로를 이등분한다.
한 쌍의 대변이 평행하고, 그 길이가 같다.
함께 보면 좋은 글
평행사변형의 성질, 평행사변형의 특징
평행사변형과 넓이
사각형의 정의와 성질, 조건
여러 가지 사각형 사이의 관계