원기둥
원기둥의 부피와 겉넓이, 각기둥의 부피와 겉넓이
사각형의 넓이는 (가로) × (세로)예요. 삼각형의 넓이는 ½ × (가로) × (세로)고요.
그렇다면 직육면체의 넓이는 얼마일까요? 이 글에서는 직육면체 같은 각기둥과 원기둥의 겉넓이를 구하는 방법과 부피 구하는 방법을 공부할 거예요.
원기둥의 부피와 겉넓이는 따로 구하는 게 아니라 각기둥의 부피와 겉넓이 구하는 방법과 똑같아요. 다만 밑면이 원이라서 밑면의 넓이와 밑면의 둘레 길이 구하는 방법에 차이가 있을 뿐이에요. 각기둥의 부피와 겉넓이 구하는 방법에 원의 넓이 공식만 대입하는 거니까 서로 다른 거로 생각하지 마세요.
각기둥의 겉넓이와 부피
기둥의 겉넓이는 입체도형을 펼쳤을 때 얻어지는 기둥의 전개도의 전체 넓이를 말해요. 기둥의 전개도는 밑면 두 개와 옆면들로 되어 있어요. 각각의 넓이를 구해서 서로 더하면 되겠죠.
(기둥의 겉넓이) = (밑면의 넓이) × 2 + (옆면의 넓이의 합)
각기둥은 밑면이 두 개니까 밑면 한 개의 넓이를 구해서 두 배하면 되고요.
옆면의 넓이를 구할 때 옆면의 넓이를 하나씩 구해서 다 더하기보다는 옆면 전체를 하나의 직사각형으로 보고, 한 번에 구하는 게 더 쉬워요. 큰 직사각형의 가로의 길이는 밑면의 둘레의 길이와 같으니까 여기에 높이만 곱해주면 돼요.
직육면체의 부피는 (밑넓이) × (높이)라는 걸 초등학교 때 공부했어요. 직육면체는 대표적인 각기둥이죠? 직육면체뿐 아니라 모든 각기둥의 부피는 (밑넓이) × (높이)에요.
각기둥의 부피와 겉넓이 공식을 정리해보죠.
각기둥의 겉넓이와 부피
각기둥의 겉넓이 = 2 × (밑넓이) + (옆넓이)
각기둥의 부피 = (밑넓이) × (높이) = Sh
원기둥의 겉넓이와 원기둥의 부피
원기둥도 기둥의 한 종류에요. 그래서 겉넓이나 부피를 구하는 방법은 각기둥과 같아요.
원기둥의 겉넓이도 밑면의 넓이와 옆면의 넓이를 더해서 구해요.
밑면이 원이니까 원의 넓이 구하는 공식을 이용해야겠지요? 원의 넓이 공식은 원주율, 원의 둘레, 원의 넓이, 부채꼴 호의 길이, 부채꼴 넓이에서 해봤어요. 원의 넓이는 πr2이에요.
옆면은 직사각형 하나니까 (가로) × (세로)고요. 위 각기둥의 겉넓이에서 옆면은 (밑면의 둘레 길이) × (높이)로 구했잖아요. 여기서도 같은 방법으로 구하는데, 밑면의 둘레의 길이가 원의 둘레의 길이와 같아요. 반지름이 r인 원의 둘레는 2πr이에요.
원기둥의 부피도 (밑넓이) × (높이)로 구해요. 밑넓이는 πr2이니까 여기에 높이를 곱해주면 되겠네요.
원기둥 밑면의 반지름이 r, 높이가 h일 때
원기둥의 겉넓이 = 2 × (밑넓이) + (옆넓이) = 2πr2 + 2πrh
원기둥의 부피 = (밑넓이) × (높이) = πr2h
함께 보면 좋은 글
원주율, 원의 둘레, 원의 넓이, 부채꼴 호의 길이, 부채꼴 넓이
다면체, 각기둥, 각뿔, 각뿔대
원뿔의 겉넓이와 부피, 각뿔의 겉넓이와 부피
구의 부피와 구의 겉넓이
회전체와 원뿔대, 회전체의 성질
입체도형에서 다면체를 공부했어요. 입체도형은 크게 두 가지로 나눌 수 있는데, 하나는 다면체고, 다른 하나는 이 글에서 다룰 회전체에요.
회전체와 다면체를 정확하게 구별할 줄 알아야 해요. 다면체는 밑면을 포함하여 모든 면이 다각형이고 회전체는 밑면이 곡선을 포함하고 있으니까 이거 하나면 알아도 회전체와 다면체를 구별할 수 있을 거예요.
회전체는 한 직선을 축으로 하여 평면도형을 1회전 시킬 때 생기는 입체도형을 말해요.
회전체에서 축이 되는 한 직선을 회전축이라고 하고, 회전체에서 회전하여 옆면을 이루는 선분을 모선이라고 합니다.
회전체는 우리가 잘 아는 원기둥, 원뿔, 구가 있어요. 그리고 원뿔대라는 것도 있고요.
원기둥은 직사각형을, 원뿔은 직각삼각형을 구는 반원을 회전해서 생기는 입체도형이에요.
각뿔대는 각뿔을 밑면에 평행한 평면으로 잘라서 생기는 도형 중에 아랫부분을 말하죠? 원뿔대는 원뿔을 밑면에 평행한 평면으로 잘라서 생기는 두 입체도형 중에서 원뿔이 아닌 걸 말해요.
회전체의 성질
회전체에는 중요한 성질이 있어요.
첫 번째는 회전체를 회전축에 수직인 평면으로 자르면 단면은 항상 원이에요. 회전축에 수직인 평면이니까 가로로 자르는 거겠죠?
두 번째는 회전체를 회전축을 포함하는 단면으로 잘라도 그 단면은 모두 합동이고 회전축에 대해서 선대칭도형이에요.
이렇게 회전축을 포함하는 평면으로 세로로 자르면 회전체에 따라 그 단면이 달라요. 원기둥을 자르면 직사각형이 돼요. 원기둥은 어디를 잘라도 직사각형이 되는데 이 직사각형들이 모두 합동이라는 거죠. 원뿔은 단면이 이등변삼각형, 원뿔대는 사다리꼴이고요. 구는 원이에요.
그리고 선대칭이라는 말 알죠? 어떤 직선을 중심으로 해서 접으면 양쪽이 완전히 겹치는 걸 선대칭이라고 해요. 회전축을 포함하는 평면으로 세로로 자르면 원기둥의 단면은 직사각형이 된다고 했어요. 이 직사각형이 바로 선대칭도형이에요.
위에는 평면도형이 회전축에 딱 붙어서 생기는 회전체에요. 그런데 회전축과 평면도형이 떨어져 있는 상태에서 회전하면 어떤 도형이 생길까요? 두루마리 화장지처럼 가운데가 뻥 뚫린 회전체가 생길 거예요.
이런 회전체에서는 앞에서 설명한 회전체의 성질이 성립하지 않으니까 주의하세요.
함께 보면 좋은 글
다면체, 각기둥, 각뿔, 각뿔대
원기둥의 부피와 겉넓이, 각기둥의 부피와 겉넓이
원뿔의 겉넓이와 부피, 각뿔의 겉넓이와 부피
구의 부피와 구의 겉넓이
다면체, 각기둥, 각뿔, 각뿔대
이제는 평면도형이 아니라 입체도형이에요.
지금까지는 점, 선, 면, 다각형, 원, 부채꼴 등에 대해서 알아봤잖아요.
이제는 각기둥, 원기둥, 각뿔, 원뿔처럼 입체도형을 배울 거예요.
입체도형 중에서 첫 번째는 다면체에요. 초등학교에서 배웠던 각기둥, 각뿔이 바로 대표적인 다면체죠.
다면체는 다각형인 면으로만 둘러싸인 입체도형을 말해요. 다각형으로 둘러싸여 있어야 하니까 삼각기둥, 사각기둥, 삼각뿔, 사각뿔 등이 있지요.
원기둥과 원뿔도 다면체일까요? 원기둥과 원뿔의 밑면은 원이잖아요. 다각형이 아니죠? 그래서 원뿔과 원기둥은 다면체가 아니에요.
주의하세요. 다면체는 단순히 면이 여러 개 있는 도형이 아니라 다각형인 면이 여러 개 있는 도형이에요.
다면체에 사용하는 용어들은 꼭짓점, 모서리, 면이 있어요. 이거 다 해봤던 거죠? 그래도 한 번 정리해보고 넘어가죠.
면은 다면체를 이루고 있는 다각형이에요. 모서리는 면과 면이 만나는 곳으로 다각형의 변이고요. 꼭짓점은 모서리와 모서리가 만나는 곳이죠.
다면체의 분류
다면체는 두 가지 방법으로 분류해요.
첫 번째는 다면체의 면의 개수에 따라서 나누는 방법이 있어요. 다면체의 면이 4개이면 사면체, 5개면 오면체, 6개면 육면체, … 처럼이요. 다각형에서 각의 개수에 따라 삼각형, 사각형, 오각형으로 나누는 것과 마찬가지예요.
두 번째는 모양에 따라 나눠요. 우리가 알고 있는 각기둥, 각뿔 등으로 나누는 방법이죠.
각뿔대
각기둥과 각뿔 말고 각뿔대라는 게 있어요.
각뿔을 가로로 잘랐다고 생각해보세요. 그러니까 각뿔의 밑면과 평행한 평면으로 자르면 두 부분으로 나뉘겠죠? 윗부분은 그대로 각뿔이 될 거예요. 아랫부분은 각뿔도 아니고 각기둥도 아닌 게 되겠죠? 이 아랫부분을 각뿔대라고 불러요.
각뿔대에서도 각기둥과 마찬가지로 밑면, 옆면, 높이라는 용어를 사용해요. 각기둥과 각뿔대에서 사용하는 용어의 설명과 특징을 표로 정리해봤어요.
뜻 | 각기둥 | 각뿔대 | |
---|---|---|---|
밑면 | 서로 평행한 두 면 | 평행, 합동 | 평행 (O), 합동 (X) |
옆면 | 밑면이 아닌 면 | 밑면에 수직 직사각형 |
밑면에 수직 X 사다리꼴 |
높이 | 두 밑면에 수직인 선분의 길이 |
함께 보면 좋은 글
정다면체의 뜻, 정다면체의 종류
회전체와 원뿔대, 회전체의 성질
원기둥의 부피와 겉넓이, 각기둥의 부피와 겉넓이
원뿔의 겉넓이와 부피, 각뿔의 겉넓이와 부피