사건
합의 법칙, 곱의 법칙
합의 법칙, 곱의 법칙은 [중등수학/중2 수학] - 경우의 수, 합의 법칙, 곱의 법칙에서 공부했었어요. 물론 기억나지 않겠지만요.
합의 법칙, 곱의 법칙은 경우의 수를 구하는 방법이에요. 이 과정을 집합과 관련지어서 생각하면 조금 더 쉽게 답을 구할 수 있어요. 이 글에서는 어떤 관련이 있는지를 알아볼 거예요. 집합 원소의 개수를 이용해서 구하는 거니까 내용이 어렵지 않아요.
그리고 합의 법칙을 사용하는 경우와 곱의 법칙을 사용하는 경우를 잘 비교해보세요.
합의 법칙
합의 법칙은 두 사건 A, B가 동시에 일어나지 않을 때 각각의 사건이 일어날 경우의 수를 서로 더해서 구하는 거예요.
사건 A가 일어날 경우의 수가 m, 사건 B가 일어날 경우의 수가 n이라면 두 사건 A, B가 동시에 일어나지 않을 때 사건 A 또는 사건 B가 일어날 경우의 수는 m + n이죠.
사건 A 또는 B가 일어날 경우의 수이므로 둘 중 하나만 일어나면 되는 사건이에요.
합의 법칙은 집합을 이용해서 나타낼 수 있어요. 사건 A가 일어날 경우의 수를 n(A), 사건 B가 일어날 경우의 수를 n(B)라고 할 수 있는 거죠.
이때, 사건 A 또는 사건 B가 일어날 경우의 수는 n(A + B)가 아니라 n(A ∪ B)에요. 사건 A와 사건 B가 동시에 일어나는 경우는 n(A ∩ B)고요.
두 개의 주사위를 던졌을 때 눈금의 합이 3 또는 2의 배수일 경우의 수를 구하여라.
주사위의 눈금은 1 ~ 6까지 있어요. 두 개의 주사위를 던졌을 때 눈금의 합이 3의 배수인 사건을 A, 눈금의 합이 2의 배수인 사건은 B라고 해보죠.
눈금의 합이 3의 배수인 사건 A가 일어나는 경우의 수
두 눈금의 합이 3일 때: (1, 2), (2, 1)
두 눈금의 합이 6일 때: (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)
두 눈금의 합이 9일 때: (3, 6), (4, 5), (5, 4), (6, 3)
두 눈금의 합이 12일 때:(6, 6)
눈금의 합이 2의 배수인 사건 B가 일어나는 경우의 수
두 눈금의 합이 2일 때: (1, 1)
두 눈금의 합이 4일 때: (1, 3), (2, 2), (3, 1)
두 눈금의 합이 6일 때: (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)
두 눈금의 합이 8일 때: (2, 6), (3, 5), (4, 4), (5, 3), (6, 2)
두 눈금의 합이 10일 때: (4, 6), (5, 5), (6, 4)
두 눈금의 합이 12일 때: (6, 6)
n(A) = 12, n(B) = 18에요.
두 눈금의 합이 6, 12일 때는 양쪽 사건 모두에 있네요. n(A ∩ B) = 6
n(A ∪ B) = n(A) + n(B) - n(A ∩ B) = 12 + 18 - 6 = 24
곱의 법칙
곱의 법칙은 두 사건 A, B가 동시에 일어날 때 각각의 사건이 일어날 경우의 수를 서로 곱해서 구하는 거예요. 동시에라는 말은 시간적 의미의 동시라는 뜻도 있지만 잇달아서 연달아서 일어나는 사건을 나타내요.
두 개의 주사위를 한꺼번에 던지는 예도 있지만 한 개를 먼저 던지고 다른 하나를 나중에 던지는 경우도 포함해요. 연속해서 던지는 경우니까요. 또는 한 개의 주사위를 한 번 던지고 다시 집어서 던지는 경우도 포함하죠. 잇달아 던지는 거잖아요.
사건 A가 일어날 경우의 수가 m, 사건 B가 일어날 경우의 수가 n이라면 두 사건 A, B가 동시에 일어날 경우의 수는 m × n이죠.
곱의 법칙도 집합으로 나타내보죠.
사건 A가 일어날 경우의 수를 n(A), 사건 B가 일어날 경우의 수를 n(B)라고 한다면 사건 A와 사건 B가 연달아 일어날 확률은 n(A) × n(B)에요.
두 개의 주사위 A, B를 던졌을 때, A의 눈금은 3의 배수, B의 눈금은 2의 배수가 나올 경우의 수를 구하여라.
A 주사위를 던져서 3의 배수가 나올 경우의 수: 3, 6
B 주사위를 던져서 2의 배수가 나올 경우의 수: 2, 4, 6
n(A) × n(B) = 2 × 3 = 6
합의 법칙, 곱의 법칙 구별
곱의 법칙은 동시에 일어나는 사건에 적용해요. 여기서 동시에란 연속해서, 잇달아 일어나는 사건이에요. 별개의 두 사건이 모두 발생한다는 거죠. 합의 법칙은 별개의 두 사건이 있는 경우에 둘 다 일어나지 않아도 상관없어요.
두 개의 주사위를 던졌을 때 눈금의 합이 3 또는 2의 배수일 경우의 수를 보세요. 주사위 눈금의 합이 3의 배수인 사건과 2의 배수인 사건 두 개의 사건이 일어날 수 있어요. 그런데 눈금의 합이 3의 배수인 사건만 일어나도 이 경우에는 유효해요. 반대로 눈금의 합이 2의 배수인 사건만 일어나도 유효한 거죠. 그래서 이 사건은 합의 법칙으로 경우의 수를 구해요.
두 개의 주사위 A, B를 던졌을 때, A의 눈금은 3의 배수, B의 눈금은 2의 배수가 나올 경우의 수를 보세요. A 주사위 눈금이 3의 배수인 사건만 발생해서는 유효하지 않죠? B 주사위의 눈금이 2의 배수인 사건까지 일어나야 유효해요. 두 사건 A, B가 모두 일어나야 유효하니까 이 경우에는 곱의 법칙을 이용해서 경우의 수를 구해요.
"동시에"라는 개념이 상당이 애매한데요. 시간적 의미의 동시라기보다는 "사건이 모두 발생한다"라는 의미로 이해하세요.
합의 법칙: 두 사건이 동시에 일어나지 않을 때, 두 사건이 모두 일어나지 않아도 상관없을 때
곱의 법칙: 두 사건이 동시에 일어날 때, 두 사건이 모두 일어나야 할 때
함께 보면 좋은 글
[중등수학/중2 수학] - 경우의 수, 합의 법칙, 곱의 법칙
[중등수학/중2 수학] - 경우의 수 공식 - 한 줄 세우기
[중등수학/중2 수학] - 경우의 수 공식 - 대표 뽑기
[중등수학/중2 수학] - 경우의 수 문제 푸는 법
확률, 확률의 뜻, 확률 공식
확률이라는 말은 많이 들어봤죠? 비 올 확률, 병에 걸릴 확률 등 뭔가의 가능성을 비율로 나타낼 때 확률이라는 표현을 많이 쓰잖아요.
이번 글에서는 확률에 대해서 배울 거예요. 확률이란 무엇인지 확률을 어떻게 구하는지에 대해서요.
물론 확률을 구하는 공식도 알아볼 거고요.
확률, 확률 공식
일정한 조건 아래에서 실험이나 관찰을 여러 번 반복할 때, 어떤 사건이 일어나는 경우의 수의 상대도수가 일정한 값에 가까워지면 이 일정한 값을 그 사건이 일어날 확률이라고 해요. 말이 어렵죠? 그냥 수학적으로 정의하자면 그렇다는 얘기고 그냥 무슨 일이 생길 가능성을 비율로 나타낸 걸 확률이라고 해요.
확률은 영어 단어 Probability의 첫 글자를 따서 P라고 써요. 사건 A가 일어날 확률을 P(A)라고 쓰지요.
확률은 비율이라서 백분율로 표현하기도 하고, 소수나 분수로도 표현해요. 10%나 0.1이나 이나 다 같은 확률을 나타내는 겁니다.
경우의 수를 이용한 확률
확률을 구하는 방법을 모르지만 우리는 확률을 구할 수 있어요.
동전을 던졌을 때 앞면이 나올 확률이 얼마인가요? 50%에요. 다 알고 있잖아요? 어떻게 구했죠? 동전은 앞, 뒤가 있는데, 둘 중 하나가 나올 거니까 50%에요.
동전을 던졌을 때 나올 수 있는 경우의 수는 앞, 뒤 이렇게 두 가지예요. 그리고 앞면이 나오는 경우의 수는 1이죠. 경우의 수를 비교해봤더니 인 거예요. 확률은 이렇게 구하는 겁니다.
사건 A가 일어날 확률은 사건 A가 일어날 수 있는 경우의 수를 전체 사건이 일어날 수 있는 경우의 수로 나눠서 구해요.
주사위를 던졌을 때 2의 배수가 나올 확률을 구해볼까요?
주사위를 던졌을 때 나올 수 있는 경우의 수는 6이고, 이 중에서 2의 배수가 나오는 경우의 수는 2, 4, 6의 세 가지예요. 그래서 주사위를 던졌을 때 2의 배수가 나올 확률은 3 ÷ 6 = 이죠.
상대도수를 이용한 확률
확률을 구할 때 경우의 수를 이용해서 구하기도 하지만 실제 관찰이나 실험을 통해서 구하기도 해요. 예를 들어 "비만인 사람은 정상인 사람보다 OO병에 걸릴 확률이 50% 높다". 이런 종류의 얘기들을 해요. 하지만 실제로 비만인 사람이 OO병에 걸리는 경우의 수를 구할 수 없죠. 수십억 명의 세계 인구 중에 비만인 사람의 수를 모두 셀 수는 없으니까요. 또 정상인 사람이 병에 걸렸는지의 경우의 수도 구할 수 없고요.
이처럼 실험이나 관찰을 통해서 확률을 구하기도 하는데요. 이때는 관찰의 개수가 적으면 확률을 제대로 구할 수 없어요. 가능한 한 많이 실험하고 많이 관찰해야 해요.
동전을 던졌을 때 앞면이 나올 확률은 에요. 이건 경우의 수를 이용해서 구한 확률이죠.
실제로 여러분이 동전을 던졌다고 해보세요. 한 번 던졌는데, 앞면이 나왔다 치죠. 그럼 동전을 던졌을 때 앞면이 나올 확률은 100%잖아요. 앞서 구한 확률과 차이가 엄청나게 많이 나죠? 동전 던지기를 한 번이 아니라 100번, 1000번 해보면 앞면이 나올 확률이 에 가까워져요. 그 실험횟수가 많으면 많을수록
에 가까워져요.
이 때 "실제 실험을 100번 해봤더니 앞면이 49번 나왔다"고 한다면 앞면이 나올 확률은 49 ÷ 100 = 0.49가 되는 거예요.
확률의 정의에서 사용했던 상대도수라든가 일정한 값에 가까워지는 등의 이야기는 바로 여기에 해당하는 내용이에요.
주사위 2개를 동시에 던질 때, 두 주사위 눈금의 합이 4의 배수가 될 확률을 구하여라.
먼저 주사위 2개를 던질 때 나올 수 있는 모든 경우의 수를 구해야겠네요. 각각의 주사위가 6가지 경우의 수를 가지니까 두 개의 주사위를 동시에 던지면 36가지 경우의 수가 생겨요.
두 주사위 눈금의 합이 4의 배수가 되는 경우를 찾아볼까요? 4, 8, 12가 될 수 있겠네요.
두 주사위 눈금의 합이 4가 되는 경우를 순서쌍으로 표시해보죠. (1, 3), (2, 2) (3, 1)의 세 가지 경우가 있네요.
눈금의 합이 8이 되는 경우는 (2, 6), (3, 5), (4, 4), (5, 3), (6, 2)의 다섯 가지 경우가 있고요.
눈금의 합이 12가 되는 경우는 (6, 6) 하나밖에 없네요.
따라서 눈금의 합이 4의 배수가 되는 경우는 총 9가지 경우가 있어요.
주사위 2개를 동시에 던질 때 두 주사위 눈금의 합이 4의 배수가 될 확률 p = 9 ÷ 36 = 입니다.
함께 보면 좋은 글
확률의 성질, 여사건의 확률
확률의 계산, 확률의 덧셈, 확률의 곱셈
연속하여 뽑는 확률의 계산
경우의 수, 합의 법칙, 곱의 법칙
경우의 수, 합의 법칙, 곱의 법칙
방학이 다 끝나고, 2학기가 시작되었어요.
2학기에는 확률과 도형에 대해서 공부해요. 1학기 때 배웠던 연립방정식이나 함수와 다른 새로운 내용이니까 "기초가 부족해" 이런 생각하지 마세요. 처음 보는 단원이다 생각하고 열심히 하시면 됩니다.
처음으로 배울 내용은 확률인데 그 중에서도 경우는 수예요. 경우의 수는 간단히 말해서 주사위를 던지거나 동전을 던졌을 때 어느 면이 나오는지 그 수를 세보는 거예요.
경우의 수는 상식적인 선에서 생각해야 해요. 동전을 던졌을 때 세로로 서 있는 경우, 침대 밑으로 굴러가서 확인할 수 없는 경우 등은 전혀 고려하지 않아요.
경우의 수
사건은 같은 조건에서 여러 번 할 수 있는 실험이나 관찰로 얻어진 결과를 말해요. "동전을 던졌더니 앞면이 나왔다." 같은 거요.
시행은 실험이나 관찰을 하는 행위를 말하고요.
경우는 수는 사건에서 일어날 수 있는 경우의 가짓수에요.
동전을 던지면 앞면이 나오는 경우가 있겠죠? 뒷면이 나오는 경우도 있을 거예요. 두 가지 경우가 있지요? 동전을 던질 때는 앞면 또는 뒷면이 나오는 두 가지 경우가 있어요. 따라서 이때의 경우의 수는 2에요.
주사위를 던지면 1, 2, 3, 4, 5, 6이 나올 수 있어요. 총 6가지죠. 따라서 이때의 경우의 수는 6이에요.
합의 법칙
경우의 수를 구하는 방법은 크게 두 가지에요. 그중에 첫 번째는 합의 법칙인데요.
한 개의 주사위를 던져서 2의 배수 또는 5의 배수가 나오는 경우의 수를 구한다고 해보죠.
주사위를 던져서 2의 배수가 나오는 경우는 2, 4, 6의 세 경우가 있어요. 경우의 수는 3이죠.
주사위를 던져서 5의 배수가 나오는 경우는 5 한 가지뿐이에요.
주사위를 던져서 2의 배수 또는 5의 배수가 나오는 경우는 3 + 1 = 4예요.
주사위를 던졌을 때 어떤 수가 나오는데, 2의 배수이면서 5의 배수인 경우가 있나요? 없죠? 그래서 각각의 경우의 수를 구해서 더해주는 거예요.
합의 법칙은 각 사건이 동시에 일어나지 않을 때 사용해요. 문제에서 " 또는 ", "~ 이거나" 하는 표현들이 나올 때죠.
사건 A가 일어나는 경우의 수가 a가지
사건 B가 일어나는 경우의 수가 b가지일 때,
사건 A 또는 B가 일어날 경우의 수 = a + b(가지)
1 ~ 30까지의 자연수가 적힌 카드가 상자에 들어있다. 이 상자에서 카드를 한 장 꺼낼 때 5의 배수인 카드 또는 7의 배수인 카드가 나올 경우의 수는 몇 가지인가?
상자에서 카드를 꺼낼 때 5의 배수인 카드가 나오는 경우는 5, 10, 15, 20, 25, 30으로 6가지에요.
7의 배수인 카드가 나오는 경우는 7, 14, 21, 28로 4가지고요.
문제에서 "5의 배수인 카드 또는 7의 배수인 카드"라고 했으니까 두 경우의 수를 더해서 6 + 4 = 10, 총 10가지 경우가 되겠네요.
1 ~ 30까지의 자연수가 적혀있는 카드가 상자에 들어있다. 이 상자에서 카드를 한 장 꺼낼 때 3의 배수인 카드 또는 4의 배수인 카드가 나올 경우의 수는 몇 가지인가?
위의 예제와 같은 문제인데 숫자만 바꿨어요. 풀이가 어떻게 달라지는지 보죠.
상자에서 카드를 꺼낼 때 3의 배수인 카드가 나오는 경우는 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 총 10가지에요.
4의 배수인 카드가 나오는 경우는 4, 8, 12, 16, 20, 24, 28 총 7가지고요.
이 문제에서도 "3의 배수인 카드 또는 4의 배수인 카드"라고 했으니까 그냥 10 + 7 = 17하면 될까요?
안됩니다. 12가 적힌 카드를 뽑았다고 해보죠. 12는 3의 배수이면서 4의 배수예요. 12를 뽑은 건 하나의 사건인데 3의 배수인 카드를 뽑은 사건과 4의 배수를 뽑은 사건 양쪽에서 각각 더해주면 두 번을 세는 거예요. 그래서 한 번은 빼줘야 해요. 24도 마찬가지고요.
10 + 7 - 2 = 15, 이때의 경우의 수는 15가 돼요.
합의 법칙은 두 사건 중 하나만 일어나도 상관없을 때 각 사건이 일어나는 경우의 수를 더해줘요. 하지만 두 사건이 모두 일어나는(중복되는) 경우가 생기면 그만큼을 빼줘요.
곱의 법칙
1, 2, 3, 4가 적힌 카드 네 장이 있어요. 이 네 장의 카드를 이용해서 두 자리 자연수를 만드는 경우의 수는 몇 가지인지 알아보죠.
두 자리 자연수를 만든다고 했으니까 십의 자리 숫자 하나, 일의 자리 숫자 하나를 뽑아야 해요.
십의 자리 숫자로 1을 놓는다고 하면, 일의 자리 숫자는 2, 3, 4가 될 수 있어요. 경우의 수는 3가지네요.
십의 자리 숫자로 2를 놓는다고 하면, 일의 자리 숫자는 1, 3, 4가 될 수 있어요. 경우의 수는 3가지네요.
십의 자리 숫자로 3을 놓는다고 하면, 일의 자리 숫자는 1, 2, 4가 될 수 있어요. 경우의 수는 3가지네요.
십의 자리 숫자로 4을 놓는다고 하면, 일의 자리 숫자는 1, 2, 3이 될 수 있어요. 경우의 수는 3가지네요.
각각의 경우를 수를 다 더하면 3 + 3 + 3 + 3 = 12가 나와요.
이 문제를 쉽게 풀어볼까요?
십의 자리 숫자에 올 수 있는 수는 1, 2, 3, 4 해서 총 4개에요. 그리고 어떤 한 수를 십의 자리에 놓았을 때 일의 자리에 올 수 있는 숫자는 나머지 3개죠?
(십의 자리를 뽑는 경우의 수 4) × (일의 자리를 뽑는 경우의 수 3) = 12 하면 쉽게 구할 수 있죠?
곱의 법칙은 합의 법칙과 달리 사건이 동시에 일어나는 경우에 사용해요. 동시라는 같은 시각을 의미하는 게 아니에요. 경우의 수를 구하는 과정에서 두 사건이 모두 일어나야 한다는 뜻이에요.
십의 자리를 뽑는 것과 일의 자리를 뽑는 두 사건이 모두 일어나야 하죠? 십의 자리를 뽑는 사건과 일의 자리를 뽑는 사건 중 하나만 일어나서는 경우의 수를 구할 수 없어요. "동시에"라는 말은 여러 사건이 모두 일어나는 경우를 말해요.
이처럼 두 개 이상의 사건이 동시에 일어나면 각각의 경우의 수를 곱해요.
사건 A가 일어나는 경우의 수가 a가지
사건 B가 일어나는 경우의 수가 b가지일 때,
사건 A와 사건 B가 동시에 일어날 경우의 수 = a × b(가지)
3종류의 티셔츠와 2종류의 바지가 있다. 티셔츠와 바지를 하나씩 골라 입을 수 있는 경우의 수를 구하여라.
여기서는 3종류의 티셔츠 중 하나를 고르는 사건과 2종류의 바지 중에서 하나씩 골라 입는 경우의 수를 구하라고 했어요. 티셔츠를 고르는 사건과 바지를 고르는 사건은 동시에 일어나야 하는 하죠?
티셔츠를 고를 수 있는 경우의 수는 3, 바지를 고를 수 있는 경우의 수는 2에요.
따라서 옷을 입을 수 있는 경우의 수는 3 × 2 = 6(가지)가 되는 거죠.
합의 법칙과 곱의 법칙의 선택
어떤 두 사건이 있을 때 두 사건 중 하나만 일어나도 상관없으면 합의 법칙, 두 사건이 모두 일어나야 하면 곱의 법칙을 사용해요.
위의 1 ~ 30까지 자연수가 적힌 카드가 들어있는 상자에서 5의 배수 또는 7의 배수가 적힌 카드를 뽑는 경우의 수 예제를 보죠. 이때는 5의 배수가 적힌 카드가 나와도 괜찮죠. 그리고 7의 배수가 적힌 카드를 뽑아도 괜찮아요. 두 사건 중 하나만 일어나도 상관없으니까 합의 법칙이에요.
3종류의 티셔츠와 2종류의 바지에서 하나를 고르는 예제를 보죠. 티셔츠를 고르는 사건만 일어나거나 바지만 고르는 사건만 일어나서는 안 돼요. 두 사건 모두가 일어나야 해요. 그래서 곱의 법칙을 이용해서 경우의 수를 구해요.
합의 법칙: 여러 사건 중 하나만 일어나도 괜찮은 경우
곱의 법칙: 여러 사건이 모두 일어나야 하는 경우
함께 보면 좋은 글
[중등수학/중2 수학] - 경우의 수 공식 - 한 줄 세우기
[중등수학/중2 수학] - 경우의 수 공식 - 대표 뽑기
[중등수학/중2 수학] - 확률, 확률의 뜻, 확률 공식
[중등수학/중2 수학] - 확률의 성질, 여사건의 확률