전체집합

집합의 연산법칙 두 번째예요.

여기서는 집합에서 가장 많이 사용하는 드모르간의 법칙차집합의 성질을 공부할 거예요. 이 두 가지는 벤다이어그램을 그려서 확인해보세요.

그 외에 집합의 연산에서 자주 사용하는 집합의 성질도 알아볼 건데, 이건 각 집합에서 사용하는 개념을 잘 생각해보면 이해할 수 있을 거예요. 혹시 이해하기 어렵다면 마찬가지로 벤다이어그램을 그려서 확인해볼 수도 있어요.

집합의 연산은 식이 되게 복잡하고 길어 보이지만 연산 법칙과 성질만 잘 알면 풀 수 있어요. 겁먹지 마세요.

드모르간의 법칙

처음 듣는 이름인데요. 집합에서 계속 나오는 법칙이에요. 공식처럼 외워야 합니다.

드모르간의 법칙
드모르간의 법칙 - 벤다이어그램
(A ∪ B)C = AC ∩ BC

여집합 기호 C가 마치 지수법칙처럼 각 집합에 적용되어 AC, BC가 되었고, 괄호 안에 있던 연산이 반대로(∩ → ∪, ∪ → ∩) 바뀌었어요.

집합의 연산에서 매우 중요한 법칙이에요. 꼭 벤다이어그램으로 그려서 직접 확인해보세요.

차집합의 성질

차집합 A - B는 A에는 속하지만 B에는 속하지 않는 원소들의 집합이에요. A - B = {x|x ∈ A이고 x B}

전체집합, 여집합, 차집합

이걸 연산에서 교집합과 여집합의 조합으로 바꿀 수 있어요. 벤다이어그램을 그려서 확인해보세요.

A - B = A ∩ BC
차집합

차집합에서 앞에 있는 집합은 그대로, 빼기(-) → ∩으로, 뒤에 있는 집합은 여집합(C)으로 바뀌었어요.

B - A는 뭘까요? B는 그대로, 빼기(-)는 ∩으로, A는 여집합(AC)으로 바꿔요. B - A = B ∩ AC

집합의 연산에서 자주 사용하는 집합의 성질

집합의 연산에서 법칙은 아니지만 자주 사용하는 성질들이 있어요. 개수가 많아서 어려울 것처럼 보이지만 의미를 잘 생각해보면 이해가 될 거예요. 아니면 벤다이어그램을 그려서 확인해보세요. 굳이 외울 필요는 없지만 연산 과정에서 보면 이해할 수 있어야 해요.

교집합과 합집합에 관련된 성질이에요. 교집합과 합집합

A ∩ A = A, A ∪ A = A
(A ∩ B) ⊂ A ⊂ (A ∪ B)
A ∩ 공집합 = 공집합, A ∪ 공집합 = A
A ∩ U = A, A ∪ U = U

합집합과 교집합에 관련된 성질보다 더 많이 사용하는 건 여집합과 관련된 성질이에요.

A ∩ AC = , A ∪ AC = U
(AC)C = A, 공집합C = U, UC =

여집합은 쉽게 말해서 "아닌 것"이죠? AC는 A에 포함되지 않은 원소들로 이루어진 집합으로 A의 원소를 제외한 다른 원소는 모두 들어있어요. 그래서 A와 AC 사이에는 공통된 게 없으니까 교집합은 공집합이고 합집합은 U에요. (AC)C은 이중부정이 되어 원래와 같아지는 거예요. 전체집합 U의 원소가 아닌 것은 없으니까 UC = 공집합이 되죠.

이번에는 두 집합 사이의 포함 관계를 알아볼 수 있는 성질이에요.

A ∩ B = A ↔ A ⊂ B
A ∪ B = B ↔ A ⊂ B
A ⊂ B이고, B ⊂ A ↔ A = B

다음을 간단히 하여라. (단, 전체집합 U에 대하여 A ⊂ U, B ⊂ U)
{(AC ∪ BC) ∩ (A ∪ BC)} ∩ A

상당히 길죠? 이걸 벤다이어그램으로 구할 수도 있어요. 하지만 집합의 연산법칙을 이용하면 다항식 계산하듯이 정리할 수 있어요.

{(AC ∪ BC) ∩ (A ∪ BC)} ∩ A
= {(AC ∩ A) ∪ BC)} ∩ A            (∵ 분배법칙)
= ( ∪ BC) ∩ A                       (∵ AC ∩ A = )
= BC ∩ A                                  (∵  ∪ BC = BC)
= A ∩ BC                                  (∵ 교환법칙)
= A - B                                     (∵ A ∩ BC = A - B)

첫 번째 줄에 보면 ( ) 안에는 ∪ BC이 양쪽 모두에 들어있어요. 이걸 분배법칙으로 묶어서 2번째 줄이 되었어요. 마지막 줄에서는 차집합의 성질을 이용했네요.

되게 길어서 복잡해 보이지만 성질을 잘 이용하면 풀 수 있어요. 겁먹지 말고 차근차근 해보세요.

함께 보면 좋은 글

집합의 연산법칙 1 - 교환법칙, 결합법칙, 분배법칙
부분집합, 부분집합의 개수 구하기
유한집합의 원소의 개수
교집합과 합집합
전체집합, 여집합, 차집합

정리해볼까요

집합의 연산법칙

  • 드모르간의 법칙
    (A ∪ B)C = AC ∩ BC
    (A ∩ B)C = AC ∪ BC
  • 차집합: A - B = A ∩ BC
 

집합의 종류가 참 많죠? 이번에는 여집합차집합입니다.

여집합과 차집합은 교집합, 합집합과 대비되는 개념이에요. 그렇다고 완전히 반대되는 것도 아니고요. 차집합의 "차"가 일반적인 사칙연산의 "빼기"와 다르니 차이를 잘 구별하셔야 해요.

여집합

여집합을 공부하기 전에 전체집합에 관해 얘기해보죠.

전체집합은 어떤 집합이 주어졌을 때 모든 대상을 포함하는 집합이에요. 조금 어렵나요? 그냥 말 그대로 주어진 전부를 하나의 집합이라고 생각하면 쉬워요. 주어진 집합은 전체집합의 부분집합이죠.

일반적으로 전체집합은 Universal의 첫 글자를 따서 U라고 합니다. 합집합 기호 ∪와 혼동하지 마세요.

전체집합의 부분집합인 A에 대하여 집합 U의 원소 중 A에 속하지 않는 원소로 이루어진 집합을 여집합이라고 해요. 쉽게 말하면 A에 속하지 않은 원소들로 이루어진 집합이죠. 더 쉽게 얘기하면 A가 아닌 것들의 집합이고요.

여집합을 나타내는 기호는 Complementary의 첫 글자를 따서 C로 표시해요. 대신 그냥 C가 아니라 마치 지수를 나타내는 것처럼 집합 기호의 오른쪽 위에 작은 글씨로 나타내죠. A의 여집합은 기호로 Ac라고 표시해요.

U = {1, 2, 3, 4, 5}이고 A = {1, 2, 3}이라면 A의 여집합은 A에 속하지 않는 4, 5로 이루어진 집합으로 Ac = {4, 5}에요. A의 원소가 아니라고 해서 6, 7, 8 이런 숫자들을 포함한 {4, 5, 6, 7, 8}도 될까요? 정답은 아니에요. 왜냐하면 6, 7, 8이라는 숫자는 전체집합 U의 원소가 아니기 때문이죠.

A와 Ac 둘 다 전체집합 U의 부분집합이에요.

벤다이어그램으로 그리면 아래처럼 되지요. 흰색이 집합 A, 배경색이 있는 부분이 A의 여집합이고, 둘을 모두 합친 게 전체집합 U입니다.

여집합

여집합을 조건제시법으로 나타내면 Ac= {x|x ∈ U, x A}로 나타낼 수 있어요.

차집합

차집합의 정의는 집합 A에는 속하지만, 집합 B에는 속하지 않는 원소들로 이루어진 집합을 말해요. 순수하게(?) A에만 있는 원소들의 집합이죠. 바꿔말해 집합 A의 원소에서 집합 B의 원소를 제외하고 남은 원소들로 이루어진 집합이라고 표현할 수도 있죠.

차집합은 이름에서 알 수 있듯이 집합에서 다른 집합을 뺀 집합이에요. 그런데 우리가 아는 빼기가 아니랍니다.

바구니에 사과, 배, 귤이 하나씩 들어있다고 치죠. 그 바구니에서 사과와 감을 빼내면 뭐가 남을까요? 바구니에 사과는 들어있으니까 사과를 뺄 수는 있겠죠. 그런데 바구니에는 감이 없어서 감을 빼낼 수 없어요. 그러니까 그냥 넘어가죠. 그럼 바구니에는 배와 귤이 남아있겠네요.

집합에서 빼기는 원소들을 빼는 겁니다. 그런데 뺄 수가 없을 때는 그냥 넘어가는 거예요.

두 집합 A = {1, 2, 3, 4}, B = {3, 4, 5, 6}이 있어요. 집합 A에서 집합 B를 뺀다는 얘기는 A의 원소에서 B의 원소를 하나씩 지운다는 뜻이에요. 일단 A에서 3, 4를 뺍니다. 그다음 5, 6을 빼야 하는데 A에는 5, 6이 없으니까 그냥 패스…… 그럼 A에는 1, 2가 남네요.

차집합은 A - B라고 써요. 따라서 A - B = {1, 2}인 거죠. 반대로 B - A={5, 6}이군요.

차집합

위 벤다이어그램에서 A - B는 색으로 표시된 {1, 2} 부분이에요. 3, 4는 A에 들어있지만 B에도 들어있어서 순수하지(?) 않아요.

조건제시법으로 나타내면 A - B = {x|x ∈ A, x not element B}입니다.

U = {x|x는 10 이하의 자연수}, A = {x|x는 6의 약수}, B = {x|x는 9의 약수}일 때, 다음을 구하여라.
(1) Ac와 Bc
(2) A - B와 B - A

일단, 원소나열법으로 바꿔서 나타내볼까요?

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 6}, B = {1, 3, 9}

(1) 여집합은 해당 집합의 원소가 아니지만 전제집합 U에는 포함된 원소로 이루어진 집합이에요. Ac는 A의 원소는 아니지만 U에는 포함된 원소들로 이루어진 집합이죠.

Ac = {4, 5, 7, 8, 9, 10}
Bc = {2, 4, 5, 6, 7, 8, 10}

(2) 차집합 A - B는 집합 A에는 속하지만 집합 B에는 속하지 않는 원소들로 이루어진 집합이죠.

A - B = {2, 6}
B - A = {9}

정리해볼까요
  • A의 여집합: 전체집합 U의 원소 중에서 집합 A의 원소가 아닌 원소로 이루어진 집합. Ac
  • A 차집합 B: A는 포함되지만 B에는 포함되지 않는 원소들로 이루어진 집합. A - B
<<    수학 2 목차    >>
 

+ 최근글