교집합

유한집합은 원소의 개수를 셀 수 있는 집합이에요. 따라서 원소의 개수와 관련된 문제는 당연히 유한집합이에요. 물론 원소의 개수가 0개인 공집합 공집합도 포함되고요.

유한집합의 원소의 개수를 구할 때는 무작정 구하는 게 아니라 그와 관련된 다른 집합의 원소의 개수를 알려줘요. 그러니까 이 글에서는 유한집합의 원소의 개수 사이에는 어떤 관계가 있는지 알아볼 거예요. 이런 관계를 통해서 원소의 개수를 구하는 겁니다.

집합에서 이해를 돕는 가장 좋은 방법은 벤다이어그램을 그리는 방법이니까 각 설명 과정에 나오는 벤다이어그램을 잘 보세요.

유한집합의 원소의 개수

교집합과 합집합의 원소의 개수

집합 A의 원소의 개수는 n(A)라는 기호로 나타내는 거 알고 있죠? 집합의 원소의 개수

두 집합 A, B와 교집합, 합집합의 원소의 개수에 어떤 관계가 있는지 알아보죠.

일단 그림에서 알 수 있는 집합의 원소의 개수를 구해볼까요?
n(A) = x + y
n(B) = y + z
n(A ∩ B) = y
n(A ∪ B) = x + y + z

위에 두 개를 더하고 아래 두 개를 더해보죠.

n(A) + n(B) = n(A ∩ B) + n(A ∪ B) = x + 2y + z

가운데 있는 n(A ∪ B)나 n(A ∩ B)를 이항해보세요.

n(A ∪ B) = n(A) + n(B) - n(A ∩ B)
n(A ∩ B) = n(A) + n(B) - n(A ∪ B)

두 집합의 원소의 개수와 합집합, 교집합의 원소의 개수와의 관계를 알 수 있겠죠?

이번에는 아래 그림처럼 A, B, C의 세 집합이 있을 때에요.

나머지는 위와 같으니까 넘어가고 n(A ∪ B ∪ C)를 구해보죠. A ∪ B ∪ C = (A ∪ B) ∪ C라고 생각할 수 있겠죠? 이렇게 나눠서 해봐요.
n(A ∪ B ∪ C) = n(A ∪ B) + n(C) - n((A ∪ B) ∩ C)
= {n(A) + n(B) - n(A ∩ B)} + n(C) - n((A ∩ C) ∪ (B ∩ C))
= n(A) + n(B) - n(A ∩ B) + n(C) - {n(A ∩ C) + n(B ∩ C) - n((A ∩ C) ∩ (B ∩ C))
= n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + n(A ∩ B ∩ C)

집합의 연산법칙을 이용해서 집합의 모양을 바꾸고 거기에 위에서 봤던 합집합과 교집합의 원소의 개수를 넣어봤더니 마지막 줄처럼 나왔어요.

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + n(A ∩ B ∩ C)

세 집합의 합집합의 원소의 개수는 각각의 집합의 원소의 개수를 다 더하고, 두 개씩의 교집합의 원소의 개수를 빼고, 세 개의 교집합의 원소의 개수를 더하는 거예요. 복잡하지만 금방 외울 수 있을 거예요.

여집합과 차집합의 원소의 개수

이번에는 좀 쉬운 거 하죠. 여집합의 원소의 개수에요.

n(AC) = n(U) - n(A)

A - B = A - (A ∩ B) = (A ∪ B) - B로 나타낼 수 있으니까 그 상태 그대로 원소의 개수로 바꿔주면 돼요.

n(A - B) = n(A) - n(A ∩ B) = n(A ∪ B) - n(B)

하나는 교집합을 하나는 합집합을 이용하는 거니까 차이를 잘 보세요.

n(A) = 10, n(B) = 8, n(A ∪ B) = 15일 때, 다음을 구하여라.
(1) n(A ∩ B)
(2) n(A - B)
(3) n(B - A)

(1)에서 n(A ∩ B) = n(A) + n(B) - n(A ∪ B) = 10 + 8 - 15 = 3

(2) n(A - B) = n(A ∪ B) - n(B) = 15 - 8 = 7
다른 방법으로 n(A - B) = n(A) - n(A ∩ B) = 10 - 3 = 7

(3) n(B - A) = n(A ∪ B) - n(A) = 15 - 10 = 5
다른 방법으로 n(B - A) = n(B) - n(A ∩ B) = 8 - 3 = 5

선영이네 반은 총 30명의 학생이 있다. 이 중에 지난 토요일에 무한도전을 본 학생은 17명, 스타킹을 본 학생은 12명, 둘 다 본 학생은 5명일 때, 둘 중 아무 프로그램도 보지 않은 학생은 몇 명인가?

총 30명이라고 했으니까 n(U) = 30
무한도전을 본 학생을 집합 A라고 하면 n(A) = 17
스타킹을 본 학생을 집합 B라고 하면 n(B) = 12
둘 다 본 학생은 n(A ∩ B) = 5
아무 프로그램도 안 본 학생은 (A ∪ B)C이므로 학생 수는 n((A ∪ B)C) = n(U) - n(A ∪ B)

n(A ∪ B) = n(A) + n(B) - n(A ∩ B) = 17 + 12 - 5 = 24

n((A ∪ B)C) = n(U) - n(A ∪ B) = 30 - 24 = 6(명)

함께 보면 좋은 글

부분집합, 부분집합의 개수 구하기
집합의 연산법칙 1 - 교환법칙, 결합법칙, 분배법칙
집합의 연산법칙 2 - 드모르간의 법칙, 차집합의 성질

정리해볼까요

유한집합 원소의 개수

  • n(A ∪ B) = n(A) + n(B) - n(A ∩ B)
    n(A ∩ B) = n(A) + n(B) - n(A ∪ B)
  • n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + n(A ∩ B ∩ C)
  • n(AC) = n(U) - n(A)
  • n(A - B) = n(A) - n(A ∩ B) = n(A ∪ B) - n(B)
 

집합의 연산법칙 두 번째예요.

여기서는 집합에서 가장 많이 사용하는 드모르간의 법칙차집합의 성질을 공부할 거예요. 이 두 가지는 벤다이어그램을 그려서 확인해보세요.

그 외에 집합의 연산에서 자주 사용하는 집합의 성질도 알아볼 건데, 이건 각 집합에서 사용하는 개념을 잘 생각해보면 이해할 수 있을 거예요. 혹시 이해하기 어렵다면 마찬가지로 벤다이어그램을 그려서 확인해볼 수도 있어요.

집합의 연산은 식이 되게 복잡하고 길어 보이지만 연산 법칙과 성질만 잘 알면 풀 수 있어요. 겁먹지 마세요.

드모르간의 법칙

처음 듣는 이름인데요. 집합에서 계속 나오는 법칙이에요. 공식처럼 외워야 합니다.

드모르간의 법칙
드모르간의 법칙 - 벤다이어그램
(A ∪ B)C = AC ∩ BC

여집합 기호 C가 마치 지수법칙처럼 각 집합에 적용되어 AC, BC가 되었고, 괄호 안에 있던 연산이 반대로(∩ → ∪, ∪ → ∩) 바뀌었어요.

집합의 연산에서 매우 중요한 법칙이에요. 꼭 벤다이어그램으로 그려서 직접 확인해보세요.

차집합의 성질

차집합 A - B는 A에는 속하지만 B에는 속하지 않는 원소들의 집합이에요. A - B = {x|x ∈ A이고 x B}

전체집합, 여집합, 차집합

이걸 연산에서 교집합과 여집합의 조합으로 바꿀 수 있어요. 벤다이어그램을 그려서 확인해보세요.

A - B = A ∩ BC
차집합

차집합에서 앞에 있는 집합은 그대로, 빼기(-) → ∩으로, 뒤에 있는 집합은 여집합(C)으로 바뀌었어요.

B - A는 뭘까요? B는 그대로, 빼기(-)는 ∩으로, A는 여집합(AC)으로 바꿔요. B - A = B ∩ AC

집합의 연산에서 자주 사용하는 집합의 성질

집합의 연산에서 법칙은 아니지만 자주 사용하는 성질들이 있어요. 개수가 많아서 어려울 것처럼 보이지만 의미를 잘 생각해보면 이해가 될 거예요. 아니면 벤다이어그램을 그려서 확인해보세요. 굳이 외울 필요는 없지만 연산 과정에서 보면 이해할 수 있어야 해요.

교집합과 합집합에 관련된 성질이에요. 교집합과 합집합

A ∩ A = A, A ∪ A = A
(A ∩ B) ⊂ A ⊂ (A ∪ B)
A ∩ 공집합 = 공집합, A ∪ 공집합 = A
A ∩ U = A, A ∪ U = U

합집합과 교집합에 관련된 성질보다 더 많이 사용하는 건 여집합과 관련된 성질이에요.

A ∩ AC = , A ∪ AC = U
(AC)C = A, 공집합C = U, UC =

여집합은 쉽게 말해서 "아닌 것"이죠? AC는 A에 포함되지 않은 원소들로 이루어진 집합으로 A의 원소를 제외한 다른 원소는 모두 들어있어요. 그래서 A와 AC 사이에는 공통된 게 없으니까 교집합은 공집합이고 합집합은 U에요. (AC)C은 이중부정이 되어 원래와 같아지는 거예요. 전체집합 U의 원소가 아닌 것은 없으니까 UC = 공집합이 되죠.

이번에는 두 집합 사이의 포함 관계를 알아볼 수 있는 성질이에요.

A ∩ B = A ↔ A ⊂ B
A ∪ B = B ↔ A ⊂ B
A ⊂ B이고, B ⊂ A ↔ A = B

다음을 간단히 하여라. (단, 전체집합 U에 대하여 A ⊂ U, B ⊂ U)
{(AC ∪ BC) ∩ (A ∪ BC)} ∩ A

상당히 길죠? 이걸 벤다이어그램으로 구할 수도 있어요. 하지만 집합의 연산법칙을 이용하면 다항식 계산하듯이 정리할 수 있어요.

{(AC ∪ BC) ∩ (A ∪ BC)} ∩ A
= {(AC ∩ A) ∪ BC)} ∩ A            (∵ 분배법칙)
= ( ∪ BC) ∩ A                       (∵ AC ∩ A = )
= BC ∩ A                                  (∵  ∪ BC = BC)
= A ∩ BC                                  (∵ 교환법칙)
= A - B                                     (∵ A ∩ BC = A - B)

첫 번째 줄에 보면 ( ) 안에는 ∪ BC이 양쪽 모두에 들어있어요. 이걸 분배법칙으로 묶어서 2번째 줄이 되었어요. 마지막 줄에서는 차집합의 성질을 이용했네요.

되게 길어서 복잡해 보이지만 성질을 잘 이용하면 풀 수 있어요. 겁먹지 말고 차근차근 해보세요.

함께 보면 좋은 글

집합의 연산법칙 1 - 교환법칙, 결합법칙, 분배법칙
부분집합, 부분집합의 개수 구하기
유한집합의 원소의 개수
교집합과 합집합
전체집합, 여집합, 차집합

정리해볼까요

집합의 연산법칙

  • 드모르간의 법칙
    (A ∪ B)C = AC ∩ BC
    (A ∩ B)C = AC ∪ BC
  • 차집합: A - B = A ∩ BC
 

교집합과 합집합

2012. 5. 14. 12:30

집합에서 여러 가지를 공부했어요. 집합, 원소, 공집합, 유한집합, 무한집합, 부분집합, 진부분집합 등이요.

이 글에서 공부할 집합은 교집합합집합이에요.

교집합과 합집합은 집합에서 가장 중요한 내용이라고 할 수 있어요. 실제 집합에서 나오는 대부분 문제가 교집합과 합집합의 형태로 된 집합에 관한 문제거든요. 주의 깊게 보세요.

교집합

두 집합 A = {1, 2, 3, 4}, B = {2, 4, 5}가 있어요.

여기에서 2는 A의 원소이니까 기호로 2 ∈ A라고 표시할 수 있겠네요. 마찬가지로 2는 B의 원소이니까 2 ∈ B로 표시할 수도 있겠죠. 그럼, 2는 A의 원소이면서 동시에 B의 원소도 됩니다. 2 ∈ A이고 2 ∈ B

4도 2와 마찬가지로 A의 원소이면서 동시에 B의 원소네요.

두 개 이상의 집합에 모두 포함된 원소들로 이루어진 집합을 교집합이라고 해요. A에도 속하고, B에도 속하는 원소들로 이루어진 집합이요.

위의 예에서는 2, 4가 A, B 양쪽에 모두 들어있으니까 이 두 원소로 이루어진 {2, 4}가 A와 B의 교집합이죠.

주의해야 할 건 양쪽에 들어있는 원소를 전부 포함하는 집합을 교집합이라고 하는 거예요. 2가 양쪽에 들어있다고 해서 {2}이라는 집합을 교집합이라고 하지 않아요. 마찬가지로 {4}라는 집합을 교집합이라고 하지도 않지요. 양쪽에 들어있는 원소가 모두 다 포함된 {2, 4}만 교집합이라고 합니다.

교집합은 기호로 ∩라고 표시해요. 그러니까 집합 A와 집합 B의 교집합은 A ∩ B로 표시하죠.

위 예에서 집합 A와 집합 B의 교집합은 A ∩ B = {2, 4}가 되겠네요. 벤다이어그램으로 그려보면 아래 그림처럼 그릴 수 있어요.

교집합

벤다이어그램에서 A와 B가 겹치는 부분이 바로 교집합입니다.

원소 x가 집합 A에 포함되고, 집합 B에도 포함되니까 기호로 표시하면 x ∈ A, x ∈ B가 되겠죠. 교집합을 조건제시법으로 나타낼 때 A ∩ B = {x|x ∈ A이고 x ∈ B}라고 합니다. 무슨 뜻인지 이해할 수 있죠?

합집합

합집합은 집합 A에 속하거나 집합 B에 속하는 모든 원소로 이루어진 집합이에요. A, B 둘 중 아무 데나 속하면 돼요. A에만 속해도 되고, B에만 속해도 되고 A와 B 양쪽 모두에 속해도 상관없어요. 기호로는 ∪로 표시합니다. 집합 A와 집합 B의 합집합은 A ∪ B로 표시하죠. 알파벳 대문자 U가 아니에요.

집합의 표현 방법을 공부할 때 원소나열법에서 중복되는 원소는 한 번만 쓰기로 했죠. {1, 2, 2, 3, 4, 4, 5}가 아니라 {1, 2, 3, 4, 5}로 말이죠.

합집합을 구할 때는 일단 두 집합의 원소를 모두 쓰는데 대신 중복되는 원소는 한 번만 써요. A = {1, 2, 3, 4}, B = {2, 4, 5}니까 A와 B의 합집합은 {1, 2, 3, 4, 5}입니다.

합집합

위 벤다이어그램에서 A와 B의 영역을 모두 합한 것이 A와 B의 합집합이에요.

합집합을 조건제시법으로 나타내면 A ∪ B = {x|x ∈ A 또는 x ∈ B}로 쓸 수 있죠.

A = {x|x는 6의 약수}, B = {x|x는 12의 약수}, C = {x|x는 10 이하의 홀수}, D = {x|x는 10 이하의 짝수}일 때, 다음을 구하여라.
(1) A ∩ B
(2) B ∪ C
(3) C ∩ D

조건제시법으로 나와 있는데 원소나열법으로 바꿔서 표시해보죠.

A = {1, 2, 3, 6}
B = {1, 2, 3, 4, 6, 12}
C = {1, 3, 5, 7, 9}
D = {2, 4, 6, 8, 10}

교집합(∩)은 양쪽 집합 모두에 포함된 원소로 이루어진 집합, 합집합(∪)은 어느 한쪽에라도 포함된 원소로 이루어진 집합이에요.

(1) A ∩ B는 A에도 속하고, B에도 속한 원소들로 이루어진 집합을 구해야겠네요.
A ∩ B = {1, 2, 3, 6}

(2) B ∪ C는 B나 C 둘 중 어느 하나에 속하거나 양쪽 모두에 속하는 원소들로 이루어진 집합이에요. 대신 중복되는 건 한 번만 쓰고요.
B ∪ C = {1, 2, 3, 4, 5, 6, 7, 9, 12}

(3) C ∩ D는 집합 C와 집합 D 양쪽 모두에 공통으로 속하는 원소들로 이루어진 집합이에요. 근데, C는 홀수의 집합이고, D는 짝수의 집합이므로 공통으로 속하는 원소가 없죠? 원소가 아무것도 없는 집합이니까 공집합이네요.
C ∩ D = {   } = 공집합 파이

정리해볼까요

두 집합 A, B에 대하여

  • 교집합: A와 B 양쪽 모두에 속하는 원소 전체로 이루어진 집합.
    A ∩ B={x|x ∈ A이고 x ∈ B}
  • 합집합: A에 속하거나 B에 속하는 원소 전체로 이루어진 집합.
    A ∪ B={x|x ∈ A 또는 x ∈ B}
<<    수학 2 목차    >>
 

+ 최근글