주기

삼각함수 그래프 세 번째 tan의 그래프예요. tan의 그래프는 앞서 했던 sin, cos의 그래프와 많이 다릅니다. 그래서 주의해서 봐야 해요. 다른 함수의 그래프와 헷갈릴 일은 없으니까 어쩌면 다행이기도 하죠.

tan의 그래프를 그릴 때 조금 어렵다면 삼각함수의 사촌 격인 삼각비의 tan를 생각하세요. 그때 공부했던 내용을 참고하면 tan 그래프를 그리고 이해하는 데 도움이 많이 될 거예요.

각 그래프의 특징을 보고 실제로 그래프를 종이에 예쁘게 그리는 연습을 하세요. 종이에 여러 번 그리는 게 그래프의 특징을 좀 더 빨리 파악하고 외우는 데 많은 도움이 됩니다.

삼각함수의 그래프 - tan 그래프

[중등수학/중3 수학] - 예각의 삼각비, 0°와 90°의 삼각비 구했던 거 기억나죠? 그것과 비슷해요. 삼각비와 삼각함수는 한 끗 차이니까요.

좌표평면 위의 단위원과 동경 가 만나는 점을 점 P(x, y)라고 하고 점 P에서 x축에 내린 수선의 발을 H라고 해보죠. 의 연장선과 x = 1이 만나는 점을 P'(x', y')이라고 하고요. 그리고 이때 동경 가 나타내는 각을 θ라고 해보죠.

△OPH ∽ △OP'H'이므로  (∵ x' = 1)

tanθ는 동경 의 연장선과 x = 1의 교점 P'의 y좌표, 높이라는 걸 알 수 있어요. 이를 이용해서 tanθ의 그래프를 그려보죠.

θ = 0일 때 P'의 y좌표는 0이므로 tanθ = 0이에요.

θ가 1사분면의 각일 때 θ가 커지면 높이도 커지므로 tanθ도 커져요.

θ = 90° = 이면 직각이라서 그 값을 알 수가 없어요. [중등수학/중3 수학] - 0°와 90°의 삼각비에서 tan90°는 그 값을 정할 수 없다고 했잖아요.

θ가 2사분면의 각일 때 x = 1과 교점이 아니라 x = -1과의 교점의 높이로 구해야겠죠?
  (∵ x' = -1)

그래서 tanθ의 부호가 (-)예요. θ가 커지면 높이가 줄어들지만, 부호가 (-)이므로 tanθ는 커져요.

θ = 180° = π이면 높이 = 0이므로 tanθ = 0이지요.

θ가 3사분면의 각이면 θ가 커질수록 tanθ도 커져요. 이때 x' = -1, y' < 0이므로 tanθ > 0이지요.

θ = 270° = 이면 역시 tanθ는 값을 정할 수 없어요.

θ가 4사분면의 각이면 x' = 1로 tanθ = y' < 0이므로 θ가 커질수록 높이는 작아지지만 tanθ는 커져요.

θ가 360° = 2π보다 커지면 위와 같은 내용이 반복돼요. 주기를 2π라고 생각할 수 있어요. 그런데 이 내용을 잘 보면 1사분면의 각일 때와 3사분면의 각일 때, 2 사분면의 각일 때와 4사분면의 각일 때의 변화가 같아요. 즉 주기가 π라는 걸 알 수 있죠. 삼각함수 각의 변환 2 - π ± θ, π/2 ± θ에서 tan(π + θ) = tanθ였어요.

tan 그래프의 가장 큰 특징은 sin 그래프, cos 그래프와 달리 물결 모양이 아니라는 거예요. 그리고 모든 영역에서 값이 커져요. 전부 다 오른쪽 위로 향하고 있어요.

그리고 , …… 처럼 nπ + (n은 정수)일 때, 값을 정할 수 없다는 거죠. 그래서 정의역은 nπ + (n은 정수)가 아닌 모든 실수고 치역은 모든 실수예요.

tan(-x) = -tanx이므로 원점에 대하여 대칭이에요.

nπ + (n은 정수)일 때 값을 정할 수는 없지만, 그때의 값에 계속 가까워지고 있어요. 무리함수의 그래프에서 점점 가까워지는 선을 점근선이라고 했죠? x = nπ + (n은 정수)가 바로 점근선이에요.

y = tanx 그래프의 특징
정의역 = {x|x ≠ nπ + (n은 정수)인 모든 실수}, 치역은 실수 전체의 집합
원점에 대하여 대칭
주기는 π
점근선은 x = nπ + (n은 정수)

함께 보면 좋은 글

삼각함수 그래프 그리는 법 - sin 그래프, 주기함수
삼각함수의 그래프 - cos 그래프
삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수 사이의 관계
삼각함수 각의 변환 총정리

정리해볼까요

y = tanx 그래프의 특징

  • 정의역 = {x|x ≠ nπ + (n은 정수)인 모든 실수}, 치역은 실수 전체의 집합
  • 원점에 대하여 대칭
  • 주기는 π
  • 점근선은 x = nπ + (n은 정수)
<<     고1 수학 목차     >>
 
그리드형

삼각함수의 그래프 두 번째 cos의 그래프에요. 이 글에서는 cos의 그래프를 그리는 방법과 정의역, 치역, 주기, 대칭 같은 특징에 대해서 알아볼 거예요.

삼각함수 각의 변환에서 sin과 cos은 서로 바뀌기도 했었죠. 그만큼 이 둘은 관계가 깊어요. cos의 그래프도 앞서 했던 삼각함수 sin 그래프와 거의 비슷해요. 그래프를 그리는 방법도 그래프의 모양과 성질까지 아주 비슷하죠. 그래서 헷갈릴 수 있어요. 반대로 조금의 차이만 제대로 기억하면 아주 쉽다는 뜻이에요. 마지막에 sin 그래프와 cos 그래프의 차이를 비교하는 내용이 있으니까 잘 봐두세요.

삼각함수의 그래프 - cos 그래프

cos 그래프를 그릴 때도 좌표평면 위의 단위원을 이용하는데요.

 

삼각함수의 그래프 그리는 법

θ를 나타내는 동경 와 단위원이 만나는 점을 P(x, y)라고 하고 cosθ를 구해보죠.

즉 θ가 커지고 점 P가 움직일 때 cosθ는 x좌표의 값과 같아요.

이걸 이용해서 y = cosθ의 그래프를 그려보죠.

sin 그래프 그릴 때는 단위원이 있는 좌표평면을 그대로 이용했다면 여기서는 왼쪽으로 90° 돌려서 보면 편해요. x의 값이 중요하니까 왼쪽으로 돌리면 마치 x를 높이처럼 사용할 수 있거든요. 아래 왼쪽 그림에서 세로 방향이 x, 가로 방향이 y에요.

 

삼각함수의 그래프 - cos 그래프

왼쪽 그림에서 삼각함수 cosθ가 x 좌표(높이)와 같다고 했어요. θ가 커지면 x 좌표의 값, 즉 cosθ의 값이 어떻게 바뀌는지 살펴보죠.

θ = 0일 때, cosθ = 1이네요.

θ가 제 1 사분면 위의 각일 때, θ가 점점 커지면 cosθ는 작아져요.

θ = 90° = 일 때, 동경이 y축의 양의 방향과 일치하니까 cosθ = 0이네요.

θ가 제 2 사분면 위의 각일 때, θ가 커지면 cosθ는 음수가 돼서 점점 작아져요. 그러다가 θ = 180° = π가 될 때 cosθ = -1이죠.

θ가 제 3 사분면 위의 각일 때, θ가 커지면 cosθ는 점점 커지고, θ = 270° = 가 되면 cosθ = 0이 되네요.

θ가 제 4 사분면 위의 각일 때, θ가 더 커지면 cosθ도 커지고 θ = 360° = 2π일 때, cosθ = 1이 돼요.

θ가 360보다 더 커지면 어떻게 되나요. 그래도 동경의 위치가 같으니까 삼각함수 각의 변환 1 - 2nπ ± θ, -θ에서 했던 것처럼 cosθ = cos(2nπ + θ)가 돼요. 앞서 설명한 cosθ의 변화가 반복되는 거죠.

θ의 크기가 커지는 것과 cosθ의 관계를 나타낸 게 오른쪽 그래프에요. 마치 물결모양을 길게 그려놓은 것처럼 생겼죠.

cosθ의 값을 보면 처음에 1로 시작했다가 0까지 작아지고, 다시 -1까지 작아지고, 0이 되었다가 1까지 커지는 과정을 반복해요. -1부터 1 사이의 값만 가지요. 치역이 {y| -1 ≤ y ≤ 1}이에요. 반면 θ는 계속 커지기도 하고 계속 작아질 수 있으므로 정의역은 실수 전체의 집합이에요.

삼각함수 각의 변환 1 - 2nπ ± θ, -θ에서 cos(-θ) = cosθ가 됐었어요. θ가 음수가 되어도 cosθ는 양수이므로 이런 관계는 y축에 대하여 대칭이죠. 그래프를 보면 확인할 수 있어요.

y = cosθ는 y = cos(2nπ + θ)이므로 2π가 더해질 때마다 같아져요. 따라서 cosθ는 주기가 2π인 주기함수예요.

삼각함수 cosθ의 그래프의 성질
정의역은 실수 전체의 집합, 치역은 {y| -1 ≤ y ≤ 1}
y축에 대하여 대칭
주기가 2π인 주기함수

y = sinx와 y = cosx 그래프 비교
y = sinx y = cosx
정의역
치역
정의역: 모든 실수
치역 {y| -1 ≤ y ≤ 1}
주기 2π
대칭 원점에 대하여 대칭 y축에 대하여 대칭
0 ~ 2π까지 값의 변화 0 → 1 → 0 → -1 → 0 1 → 0 → -1 → 0 → 1

표 마지막에 있는 "0 ~ 2π까지 값의 변화"는  순서로 값이 바뀌는 나타낸 거예요. 이걸 잘 이해하면 그래프를 그릴 수 있어요.

함께 보면 좋은 글

삼각함수 그래프 그리는 법 - sin 그래프, 주기함수
삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수 사이의 관계
삼각함수 각의 변환 1 - 2nπ ± θ, -θ
삼각함수 각의 변환 2 - π ± θ, π/2 ± θ
삼각함수 각의 변환 총정리

정리해볼까요

삼각함수 cosθ의 그래프의 성질

  • 정의역은 실수 전체의 집합, 치역은 {y| -1 ≤ y ≤ 1}
  • y축에 대하여 대칭
  • 주기가 2π인 주기함수
<<    고1 수학 목차    >>
 
그리드형

삼각함수를 공부했으니까 이제 그 그래프에 대해서도 알아봐야겠죠. 삼각함수의 그래프 중에서 첫 번째로 sin 함수의 그래프에 대해서 알아보죠. sin 함수의 그래프를 그리는 방법과 sin 함수의 그래프의 특징이에요.

sin함수의 그래프를 그리는 방법과 sin 그래프의 특징은 cos의 그래프 그리는 법과 특징과 거의 같아요. 따라서 이거 하나만 잘해놓고 cos 함수의 그래프와 차이만 알아두면 편하죠. tan 그래프는 조금 다르니까 나중에 따로 하고요.

주기함수와 주기라는 새로운 용어도 나오는데 그 의미를 잘 알아두면 삼각함수의 그래프의 특징을 이해하는 데 많은 도움이 될 거예요.

삼각함수의 그래프

sin 그래프

삼각함수의 그래프를 그릴 때는 좌표평면 위에 단위원(반지름의 길이가 1인 원)을 그려서 하는 게 편해요.

삼각함수의 그래프 그리는 법

θ를 나타내는 동경 와 단위원이 만나는 점을 P(x, y)라고 하고 sinθ를 구해보죠.

즉 θ가 커지고 점 P가 움직일 때 sinθ는 y좌표의 값과 같아요.

이걸 이용해서 y = sinθ의 그래프를 그려보죠.

삼각함수 그래프 - sin 그래프

θ와 sinθ의 관계를 함수로 나타내면 y = sinθ로 나타낼 수 있어요. 여기서 y는 좌표평면에서 사용했던 y와는 다른 y입니다. 일반적으로 함수를 나타내는 y = f(x)에서의 y에요. f(x)는 x에 관한 식이므로 여기서는 x 대신 θ를 썼으니까 y = f(θ)라고 하는 게 맞겠네요. θ에 관한 식이 sinθ이므로 이 둘을 합쳐서 y = sinθ라는 함수가 되는 거예요.

왼쪽 그림은 좌표평면 위의 x, y이고 오른쪽 그림에서 x, y는 θ와 sinθ를 함수로 표현한 x, y에요. 차이를 분명히 이해해야 해요.

왼쪽 그림에서 삼각함수 sinθ가 y 좌표(높이)와 같다고 했어요. θ가 커지면 y 좌표의 값, 즉 sinθ의 값이 어떻게 바뀌는지 살펴보죠.

θ = 0일 때, sinθ도 0이네요.

θ가 제 1 사분면 위의 각일 때, θ가 점점 커지면 sinθ도 커지고요.

θ = 90°가 되었을 때를 보죠. 라디안으로하면 에요. 동경이 y축의 양의 방향과 일치하게 되고 이때의 sinθ = 1이네요.

θ가 제 2 사분면 위의 각일 때, θ가 커지면 sinθ는 작아져요. 그러다가 θ = 180° = π가 될 때 sinθ = 0이죠.

θ가 제 3 사분면 위의 각일 때, θ가 커지면 sinθ는 음수가 되어 점점 작아지고, θ = 270° = 가 되면 sinθ = -1이 되네요.

θ가 제 4 사분면 위의 각일 때, θ가 더 커지면 sinθ가 커지고 θ = 360° = 2π일 때, sinθ = 0이 돼요.

θ가 360보다 더 커지면 어떻게 되나요. 그래도 동경의 위치가 같으니까 삼각함수 각의 변환 1 - 2nπ ± θ, -θ에서 했던 것처럼 sinθ = sin(2nπ + θ)가 돼요. 앞서 설명한 sinθ의 변화가 반복되는 거죠.

θ의 크기가 커지는 것과 sinθ의 관계를 나타낸 게 오른쪽 그래프에요. 마치 물결모양을 길게 그려놓은 것처럼 생겼죠.

sinθ의 값을 보면 처음에 0으로 시작했다가 1까지 커지고, 다시 0으로 작아지고, -1까지 작아지고, 0이 되는 과정을 반복해요. -1부터 1 사이의 값만 가지요. 치역이 {y| -1 ≤ y ≤ 1}이에요. 반면 θ는 계속 커지기도 하고 계속 작아질 수 있으므로 정의역은 실수 전체의 집합이에요.

삼각함수 각의 변환 1 - 2nπ ± θ, -θ에서 sin(-θ) = -sinθ가 됐었어요. θ가 음수가 되면 sinθ도 음수가 되므로 이런 관계는 원점에 대하여 대칭이죠. 그래프를 보면 확인할 수 있어요.

주기함수

어떤 행사를 할 때, 1주기 기념식, 2주기 기념식 이렇게 이름 붙은 행사를 봤죠? 여기서 말하는 주기는 어떤 일이 일정한 간격으로 반복적으로 행해질 때 그 반복되는 기간을 말해요. 기념식은 매년 같은 날짜에 열리니까 이 경우에는 주기가 1년이 되는 거죠. 대통령 선거는 5년에 한 번씩 해요. 그럼 주기가 5년이 되는 거예요.

함수 y = f(x)에서 임의의 x에 대하여 f(x) = f(x + p)가 성립하는 0이 아닌 p가 있을 때 이 함수를 주기함수라고 하고, p를 주기라고 해요.

y = sinθ는 y = sin(2nπ + θ)이므로 2π가 더해질 때마다 같아져요. 따라서 sinθ는 주기가 2π인 주기함수예요.

삼각함수 sinθ의 그래프의 성질
정의역은 실수 전체의 집합, 치역은 {y| -1 ≤ y ≤ 1}
원점에 대하여 대칭
주기가 2π인 주기함수

함께 보면 좋은 글

삼각함수의 뜻, 삼각함수의 정의, sin, cos, tan, 삼각함수 값의 부호
삼각함수 사이의 관계
삼각함수 각의 변환 1 - 2nπ ± θ, -θ
삼각함수 각의 변환 2 - π ± θ, π/2 ± θ
삼각함수 각의 변환 총정리

정리해볼까요

삼각함수 sinθ의 그래프의 성질

  • 정의역은 실수 전체의 집합, 치역은 {y| -1 ≤ y ≤ 1}
  • 원점에 대하여 대칭
  • 주기가 2π인 주기함수
 
그리드형

+ 최근글