경우의 수 공식

여러 가지 경우의 수 공식 두 번째입니다.

이번 글에서는 다룰 내용은 뽑기인데요. 여러 물건 중에서 하나 또는 그 이상을 선택하는 거에요.

경우의 수 공식 - 한 줄 세우기에서 했던 한 줄 세우기와 다른 점은 줄 세우기는 여러 개가 있으면 그 여러 개를 다 사용하는 경우고, 뽑기는 여러 개 중에서 일부만 사용하는 거에요.

뽑기에도 공식이 있어요. 어렵지 않은 공식이니까 어떻게 유도되는지 잘 이해해보세요.

경우의 수 공식 - 순서대로 뽑기

순서대로 뽑기는 한 줄 세우기 + 뽑기에요. 그러니까 경우의 수 공식 - 한 줄 세우기에 대해서 알고 있어야 해요.

여러 개의 항목이 있는데, 그중에서 정해진 개수만큼만 뽑아요. 그런데 순서가 있어요. 첫 번째로 뽑는 것과 두 번째로 뽑는 게 서로 다른 역할을 하는 거지요.

1 ~ 5까지의 자연수가 있는데, 이 중에서 세 개를 뽑아서 세 자리 자연수를 만드는 경우의 수는 몇 가지나 되는지 알아보죠. 세 자리의 자연수니까 백의 자리까지 있는 수에요.

  1. 백의 자리에 올 수는 1 ~ 5중에 아무거나 하나를 사용할 수 있어요. - 경우의 수 5
  2. 십의 자리에 올 수 있는 수는 백의 자리에서 뽑은 숫자 하나를 제외한 4개 중 고를 수 있어요. - 경우의 수 4
  3. 일의 자리 숫자는 백의 자리, 십의 자리에 뽑은 숫자를 제외한 3개 중에서 고를 수 있어요. - 경우의 수 3

숫자를 뽑는데 뽑는 순서에 따라 백의 자리, 십의 자리, 일의 자리로 그 역할이 달라요. 따라서 뽑는 순서가 중요하죠.

백의 자리, 십의 자리, 일의 자리를 각각 뽑는 경우의 수를 구했어요. 이 과정은 동시에 일어나니까 곱의 법칙을 이용해야겠죠? 5 × 4 × 3 = 60가지 경우가 있네요.

이걸 공식으로 표현해보죠. 전체 n개 중에서 a개를 뽑는 경우의 수예요.

위 문제에서는 1 ~ 5까지 총 5개의 숫자 중에서 3개를 뽑는 거였어요. 5, 4, 3, 2, 1 이렇게 숫자를 하나씩 줄여가면서 곱하는데, 3개를 뽑는 거니까 앞에 있는 숫자 3개만 곱해서 5 × 4 × 3 = 60이 된 거죠.

학급 인원 30명 중에서 2학기 반장과 부반장, 회장, 부회장을 각각 한 명씩 뽑으려고 한다. 이때 반장과 부반장, 회장, 부회장을 뽑을 수 있는 경우의 수를 구하여라.

위에서 했던 방법대로 해볼까요?

  1. 30명 중에서 한 명을 반장으로 뽑아요. - 경우의 수는 30
  2. 반장으로 뽑힌 학생을 제외한 29명 중에서 부반장을 뽑아요. - 경우의 수 29
  3. 반장, 부반장으로 뽑힌 학생을 제외한 28명 중에서 회장을 뽑아요. - 경우의 수 28
  4. 반장, 부반장, 회장으로 뽑힌 학생을 제외한 27명 중에서 부회장을 뽑아요. - 경우의 수 27

반장, 부반장, 회장, 부회장을 뽑는 건 동시에 일어나는 사건이니까 곱의 법칙을 이용해요.

30 × 29 × 28 × 27 = 657,720 가지 방법이 있네요.

이번에는 공식으로 풀어보죠. 학급의 학생 수가 30명이니까 n = 30이고 반장, 부반장, 회장, 부회장 총 네 명을 뽑으니까 a = 4에요.

30에서 숫자를 하나씩 줄여서 곱하는데 앞에서부터 4개를 곱하니까 30 × 29 × 28 × 27이라는 식이 나와요.

공식을 이용하면 훨씬 쉽게 구할 수 있겠죠?

눈에 확 띄는 예를 들다 보니 숫자가 커졌는데, 대개는 암산으로 가능한 정도의 계산만 나와요. 다섯 명에서 두 명을 뽑는다던가 하는 정도의 수준이에요.

경우의 수 공식 - 순서 없이 뽑기

이번에는 순서에 상관없이 뽑는 경우예요. 뽑는 순서가 중요하지 않아요.

학급 인원 30명 중에서 주번 2명을 뽑는 경우의 수를 알아볼까요?

앞에서는 회장, 부회장이라는 역할의 차이가 있으니까 뽑는 순서에 따라 그 결과가 달라졌어요. 그런데 이번처럼 주번을 뽑을 때는, 먼저 뽑히든 나중에 뽑히든 그냥 둘 다 주번으로 역할이 같아요. 순서는 아무런 의미가 없지요.

  1. 30명 중에서 한 명을 주번으로 뽑아요. - 경우의 수는 30
  2. 앞에서 주번으로 뽑힌 학생을 제외한 29명 중에서 주번을 뽑아요. - 경우의 수 29

두 사건은 동시에 일어나는 사건이니까 곱의 법칙을 30 × 29 = 870가지 경우가 있어요.

여기서 한 가지 주의해야 할 게 있어요. 1단계 30명 중에서 뽑을 때는 영철이가, 2단계 29명 중에서 뽑을 때는 철수가 뽑혔다고 해보죠. 그런데 1단계 30명 중에서 뽑을 때 철수가 뽑히고, 2단계 29명 중에서 뽑을 때 영철이가 뽑힌 것과 다른 게 있나요? 영철이가 첫 번째에서 뽑히든 두 번째에서 뽑히든 아무 상관이 없어요. 마찬가지로 철수가 첫 번째에서 뽑히든 두 번째에서 뽑히든 어차피 똑같은 주번인 거죠.

위에서 구했던 30 × 29에는 이처럼 결과적으로 똑같은 경우가 2개씩 들어있는 거에요. 따라서 30 × 29에 ÷ 2를 해줘야 우리가 구하는 경우의 수가 됩니다.

만약에 주번을 3명 뽑는다면 그럼 3으로 나눠주면 될까요? 그것도 아니에요. 3명이 뽑히는 경우의 수는 3 × 2 × 1이기 때문에 6으로 나눠줘야 해요. 위에서는 그냥 2가 아니라 2 × 1 로 나눠준 거에요.

공식으로 표현해보지요.

경우의 수 공식 - 순서없이 뽑기

전체 n개 중에서 a개를 뽑는데 순서와 상관없이 뽑는다면 분자는 n에서 1씩 줄여가면서 곱하는데 a개만큼 곱해주고, 분모는 a를 숫자를 1씩 줄여가며 곱해주는 거에요.

사과, 배, 감, 귤, 포도, 수박의 과일이 있다. 이 중에서 세 가지를 사려고 할 때 경우의 수는 얼마인가?

바로 공식에 대입해보죠.

과일의 수는 6개로 n = 6, 세 가지를 산다고 했으니까 a = 3이에요. 분자는 6에서 숫자를 1씩 줄이면서 곱하는데 앞의 3개만 곱하고, 분모는 3부터 숫자를 1씩 줄여서 곱해요

예제 풀이 1

만약에 과일을 네 가지를 산다고 한다면 아래처럼 구할 수 있겠네요. n = 6, 네 가지를 산다고 했으니까 a = 4예요. 분자는 6에서 숫자를 1씩 줄이면서 곱하는데 앞의 4개를 곱하고, 분모는 4부터 숫자를 1씩 줄여서 곱해요.

함께 보면 좋은 글

경우의 수, 합의 법칙, 곱의 법칙
경우의 수 공식 - 한 줄 세우기
확률, 확률의 뜻, 확률 공식
확률의 성질, 여사건의 확률

정리해볼까요

경우의 수 공식 - 뽑기

  • 순서대로 뽑기
  • 순서와 상관없이 뽑기
    경우의 수 공식 - 순서없이 뽑기
>>   확률
 
그리드형

경우의 수, 합의 법칙, 곱의 법칙에서 경우의 수라는 걸 알아봤어요.

이제는 여러 상황에서 경우의 수가 어떻게 되는지 알아볼 거예요.

몇 가지 패턴이 있는데, 그것만 알면 경우의 수를 쉽게 구할 수 있어요. 공식이 나옵니다. 외우면 좋겠죠?

경우의 수에서 예로 들었던 동전 던지기주사위 던지기를 알아볼 거고요. 여러 항목을 한 줄 세우기 할 때 경우의 수에 대해서 알아볼 거예요.

동전 던지기

동전은 앞면과 뒷면이 있어요. 그래서 동전 하나를 던지면 나올 수 있는 경우의 수는 두 개죠.

동전 두 개를 던졌을 때 나올 수 있는 경우의 수를 순서쌍으로 나타내 볼까요?
(앞, 앞), (앞, 뒤), (뒤, 앞), (뒤, 뒤) 이렇게 총 4가지 경우가 있어요.

동전 두 개를 던졌을 때 나오는 경우의 수는 각각의 동전을 동시에 던지니까 곱의 법칙을 이용해서 2 × 2 = 4로 구합니다.

동전을 세 개 던지면 어떻게 될까요? 마찬가지로 곱의 법칙을 이용해서 2 × 2 × 2 = 8이 되겠네요.

동전의 개수가 n 개라면 동전을 던졌을 때 나올 수 있는 경우의 수는 2n입니다.

주사위 던지기

주사위는 총 6개의 면이 있어요. 한 개의 주사위를 던지면 나올 수 있는 경우의 수는 6이에요.

주사위 두 개를 던지면 어떻게 될까요?
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

총 36가지의 경우가 있어요. 두 개의 주사위도 마찬가지로 동시에 일어나는 사건이니까 6 × 6 = 36이 되는 거죠.

주사위를 세 개 던지면 6 × 6 × 6 = 216의 경우의 수가 나와요.

주사위 n개를 던졌을 때 나올 수 있는 경우의 수는 6n입니다.

한 줄 세우기

줄 세우기는 여러 개의 항목이 있는 걸 차례대로 놓는 걸 말해요.

한 줄 세우기

1 ~ 4까지의 자연수가 있어요. 이 자연수를 차례대로 놓아서 네 자리 숫자를 만들 때, 경우의 수는 어떻게 될까요?

  1. 먼저 천의 자리 숫자에는 1 ~ 4까지 아무 수나 하나 골라요. - 경우의 수는 4
  2. 백의 자리 숫자를 고르는데, 천의 자리에 사용한 숫자는 사용할 수 없어요. 그래서 남은 세 수중에서 하나를 골라요. - 경우의 수는 3
  3. 십의 자리 숫자를 고르는데, 천, 백의 자리에 사용한 숫자는 사용할 수 없어요. 남은 두 수 중에서 하나를 골라요. - 경우의 수는 2
  4. 마지막 일의 자리 숫자는 천, 백, 십의 자리 숫자를 고르고 남은 하나가 됩니다. - 경우의 수 1

천의 자리, 백의 자리, 십의 자리, 일의 자리 숫자를 뽑는 건 동시에 일어나는 것으로 곱의 법칙을 이용할 수 있어요.

그래서 네 자리 숫자를 만들 수 있는 총 경우의 수는 4 × 3 × 2 × 1 = 24가 됩니다.

여러 항목을 줄 세울 때는 항목의 개수가 몇 개인지가 중요해요. 줄 세울 때 경우의 수는 아래 공식으로 구할 수 있어요.

한 줄 세우기 경우의 수
n × (n - 1) × (n - 2) × … × 2 × 1

개수를 하나씩 줄여가면서 계속 곱하는 거예요.

웬디, 아이린, 슬기, 조이, 예리 다섯 사람이 앨범 표지로 사용할 사진을 찍으려고 한다. 이 다섯 명이 한 줄로 서서 사진을 찍을 때 한 줄로 서는 경우의 수는 얼마인가?

한 줄 세우기 공식 한 번 더 써보죠. n × (n - 1) × (n - 2) × … × 2 × 1

멤버 수가 총 5명이니까 5부터 1씩 줄여가면서 계속 곱하면 돼요.

5 × 4 × 3 × 2 × 1 = 120 가지의 경우가 있네요.

이웃하여 한 줄 세우기

한 줄을 세울 때 특별한 경우가 있어요. 항목중에서 몇 개를 꼭 함께 놓는 경우가 있거든요.

과일가게에서 사과, 배, 감, 포도, 귤, 수박을 팔아요. 이 과일들을 한 줄로 진열하려고 할 때 사과와 배는 꼭 바로 옆에 놓게 진열을 한다면 몇 가지 경우의 수가 있을까요?

사과와 배를 바로 옆에 놓지 않아도 될 때의 경우의 수를 먼저 구해보죠. 과일의 종류가 사과, 배, 감, 포도, 귤, 수박 총 6가지니까 6 × 5 × 4 × 3 × 2 × 1 = 720가지의 경우의 수가 있어요.

이 중에서 사과와 배가 바로 옆에 붙어 있는 경우의 수를 구해야 하는 거잖아요. 이때는 사과와 배를 하나의 묶음으로 생각해 버려요. 하나의 묶음으로 생각해서 과일의 종류가 총 다섯 가지라고 계산하면 쉽거든요.

사과와 배를 하나의 묶음으로 생각하면 한 줄로 진열할 수 있는 경우의 수는 몇 가지일까요? 한 줄로 세우는 공식은 바로 위에서 했죠? 5 × 4 × 3 × 2 × 1 = 120이네요.

여기서 끝난 게 아니에요. 사과와 배를 묶음으로 생각했는데, 사과 - 배의 순서로 놓을 수도 있고 배 - 사과의 순서로 놓을 수도 있겠지요? 사과와 배를 줄 세우는 방법이 두 가지 경우가 있어요. 이건 다른 과일들을 놓는 것과 동시에 일어나는 사건이기라서 곱의 법칙을 이용해요.

결국, 여섯 종류의 과일을 진열할 때 사과와 배를 바로 옆에 놓도록 진열하는 방법은 120 × 2 = 240가지가 있어요.

이웃하여 한 줄 세우기는 아래의 공식으로 구할 수 있어요.

이웃하여 한 줄 세울 때 경우의 수
(이웃하는 걸 한 묶음으로 하여 한 줄 세우기 한 경우의 수) × (묶음 안에서 자리 바꾸는 경우의 수)

과일가게에서 사과, 배, 감, 포도, 귤, 수박을 한 줄로 진열하려고 한다. 배, 감, 포도가 서로 이웃하도록 진열하려고 할 때 경우의 수를 구하여라.

위 설명에서 했던 문제인데, 이번에는 배, 감, 포도 총 세 개의 과일을 이웃하게 진열한다고 했네요.

공식을 그대로 쓰면 돼요.

먼저 배, 감, 포도를 하나의 묶음으로 생각하면 과일의 종류는 4가지로 볼 수 있겠지요? 이 네 가지를 한 줄로 진열하는 경우의 수는 4 × 3 × 2 × 1이 되고요.

배, 감, 포도를 하나의 묶음으로 봤을 때 배, 감, 포도를 한 줄로 진열하는 방법은 3 × 2 × 1가지가 있어요.

위의 둘을 곱하면 답이 나옵니다.

(이웃하는 걸 한 묶음으로 하여 한 줄 세우기 한 경우의 수) × (묶음 안에서 자리 바꾸는 경우의 수)
= (4 × 3 × 2 × 1) × (3 × 2 × 1)
= 24 × 6
= 144

총 144가지의 경우의 수가 나오네요.

함께 보면 좋은 글

경우의 수, 합의 법칙, 곱의 법칙
경우의 수 공식 - 대표 뽑기
확률, 확률의 뜻, 확률 공식
확률의 성질, 여사건의 확률

정리해볼까요

동전 n개를 던질 때 경우의 수→ 2n

주사위 n개를 던질 때 경우의 수 → 6n

줄 세우기

  • n개를 한 줄 세울 때 경우의 수: n × (n - 1) × (n - 2) × … × 2 × 1
  • 이웃하여 한 줄 세울 때 경우의 수
    (이웃하는 걸 한 묶음으로 하여 한 줄 세우기 한 경우의 수) × (묶음 안에서 자리 바꾸는 경우의 수)
 
그리드형

+ 최근글