기출문제 풀이/검정고시

2017년 제1회 중졸검겅고시 수학 기출문제 풀이 11 ~ 20번

수학방 2017. 4. 14. 12:30

11. 정육면체 모양의 주사위를 한 번 던질 때, 1의 눈이 나올 확률은?
① 1/2    ② 1/3     ③ 1/4     ④ 1/6

주사위를 던져서 나올 수 있는 눈의 경우의 수는 6가지죠. 1의 눈이 나오는 경우의 수는 1가지고요.

따라서 답은 ④번입니다.

[중등수학/중2 수학] - 확률, 확률의 뜻, 확률 공식

 

12. 평행사변형이 아닌 것은?

평행사변형의 성질은 다음과 같아요.

  • 두 쌍의 대각의 크기가 각각 같다.
  • 이웃한 두 각의 크기의 합은 180°
  • 두 쌍의 대변의 길이가 각각 같다.
  • 두 대각선은 서로 다른 대각선을 이등분한다.

②번은 첫번째 성질에 나온 것처럼 두 쌍의 대각이 각각 100° , 80° 로 서로 같으므로 평행사변형이에요.

③번은 네 번째 성질에 나온 것처럼 대각선이 서로 다른 대각선을 이등분하므로 평행사변형이에요.

④번은 세 번째 성질에 나온 것처럼 두 쌍의 대변의 길이가 각각 2, 3으로 서로 같으므로 평행사변형이에요.

따라서 답은 ①번입니다. ①번이 평행사변형이 되려면 이웃한 변의 길이가 같은 게 아니라 ④번처럼 대변의 길이가 서로 같아야 해요.

[중등수학/중2 수학] - 평행사변형의 성질, 평행사변형의 특징

 

13. 그림에서 두 직육면체 A, B는 서로 닮은 도형이다. 두 도형의 닮음비가 1 : 2일 때, x의 값은?

① 5     ② 6     ③ 7     ④ 8

도형의 닮음비가 1 : 2라면 도형의 모든 대응변의 길이의 비도 1 : 2예요.

1 : 2 = 3 : x
x = 6

답은 ②번입니다.

[중등수학/중2 수학] - 닮은 도형의 성질

 

14. 가로의 길이가 5cm, 세로의 길이가 3cm인 직사각형이 있다.  이 직사각형의 넓이가 같은 정사각형 한 변의 길이는?
① root 13cm    ② root 15cm     ③ root 17cm     ④ root 19cm

가로 길이가 5cm, 세로 길이가 3cm인 직사각형의 넓이 = 5cm × 3cm = 15cm2

정사각형의 넓이는 (한 변의 길이)2 으로 한 변의 길이를 x라고 하면 x2 = 15이므로 정사각형 한 변의 길이는 root 15cm, 답은 ②번이네요.

[중등수학/중3 수학] - 제곱근의 뜻과 표현

 

15. x2 - 1을 인수분해하면?

① (x + 1)2     ② (x + 2)2     ③ (x + 1)(x - 1)     ④ (x + 2)(x - 2)

제곱 - 제곱 형태로 일명 합차공식으로 인수부해할 수 있어요.

a2 - b2 = (a + b)(a - b)

x2 - 1 = x2 - 12 = (x + 1)(x - 1)

답은 ③번이네요.

[중등수학/중3 수학] - 인수분해 공식 - 완전제곱식, 합차공식

 

16. 이차방정식 (x + 3)(x - 2) = 0의 한 근이 -3이다. 다른 한 근은?

① -4     ② -2     ③ 2     ④ 4

(x + 3)(x - 2) = 0
x + 3 = 0 or x - 2 = 0
x = -3 or 2

따라서 답은 ③번입니다.

[중등수학/중3 수학] - 인수분해를 이용한 이차방정식의 풀이

 

17. 이차함수 y = (x + 1)2 - 2의 그래프에 대한 설명으로 옳은 것은?

① 아래로 볼록하다.     ② 최솟값은 -1이다.
③ 축의 방정식은 x = 1이다.     ④ 꼭짓점의 좌표는 (1, 2)이다.

이차함수의 그래프의 특징을 먼저 정리해보죠.

이차함수 y = a(x - p)2 + q (a > 0일 때)의 그래프에서

아래로 볼록
최솟값은 q
축의 방정식은 x = p
꼭짓점의 좌표는 (p, q)

문제에서는 a = 1로 a > 0이므로 아래로 볼록이어서 ①번은 옳은 설명이에요.

최솟값은 -2이므로 ②번은 틀린 설명이네요.

축의 방정식은 x = -1이므로 ③번도 틀렸고요.

꼭짓점의 좌표는 (-1, -2)이므로 ④번도 틀렸네요.

설명이 옳은 건 ①번이에요.

[중등수학/중3 수학] - 이차함수 그래프의 특징

 

18. 다음은 7명의 제기차기 기록을 작은 값부터 순서대로 나열한 것이다. 이 자료의 중앙값은?

16, 16, 17, 24, 31, 37, 45

① 16     ② 17     ③ 24     ④ 45

중앙값은 변량을 크기가 작은 것부터 큰 것으로 순서대로 놓았을 때 가운데 있는 값을 말해요.

총 7명의 기록이니까 4번째 있는 기록이 가운데이므로 네 번째있는 24가 중앙값이어서 답은 ③번이네요.

[중등수학/중3 수학] - 대푯값과 평균, 중앙값, 최빈값

 

19. 그림과 같이 가로의 길이가 8cm, 세로의 길이가 6cm인 직사각형이 있다. 이 직사각형의 대각선의 길이는?

① 9cm     ② 10cm     ③ 11cm     ④ 12cm

직사각형이지만 길이를 알고 있는 두 변과 대각선을 따로 떼보면 직각삼각형을 만들 수 있어요. 직사각형의 대각선은 직각삼각형의 빗변에 해당하죠.

대각선의 길이 = 빗변의 길이

피타고라스의 정리를 이용해서 빗변의 길이를 구할 수 있어요.

(빗변의 길이)2
= 82 + 62
= 64 + 36
= 100

빗변의 길이 = 10cm

답은 ②번이네요.

[중등수학/중3 수학] - 피타고라스의 정리, 피타고라스의 정리 증명

 

20. 그림과 같이 선분 AP가 지름인 원 O에서 ∠AOB = 80° 일 때, ∠x의 크기는?

① 30°     ② 40°     ③ 50°     ④ 60°

원주각의 크기는 중심각의 크기의 2배예요.

∠AOB가 중심각 ∠APB = ∠x은 원주각이므로 ∠x는 ∠AOB의 절반인 40°입니다.

답은 ②번이네요.

[중등수학/중3 수학] - 원주각과 중심각의 크기, 원주각의 성질

함께 보면 좋은 글

2016년 제2회 중졸 검정고시 기출문제 정답
2016년 제2회 중졸검정고시 기출문제 정답

<<    검정고시    >>
 
그리드형