직선
-
점, 직선, 평면의 위치 관계2025.03.31
점, 직선, 평면의 위치 관계
기본 도형 - 점, 선, 면, 직선, 반직선, 선분>에서 점, 선, 면에 대해서 공부했어요. 이제 점, 선, 면 사이의 위치 관계를 공부할 거예요. 점과 선 사이의 위치 관계, 선과 면 사이의 위치 관계 같은 거요.
대신, 점은 그대로 점, 선은 직선, 면은 평면을 다뤄요.
점 | 직선 | 평면 | |
점 | X | O | O |
직선 | - | O | O |
평면 | - | - | O |
가로 점과 세로 직선이 만나는 칸의 (O) 표시는 점과 직선의 위치 관계를 공부한다는 뜻이고, 가로 직선과 세로 직선이 만나는 칸의 (O) 표시는 두 직선의 위치 관계를 공부한다는 뜻이에요.
점과 점 사이의 위치 관계는 X로 되어있는데, 이건 다루지 않는다는 뜻이에요.
가로 직선과 세로 점이 만나는 칸에 (-) 표시 되어 있는 건 가로 점과 세로 직선이 만나는 칸에 (O) 표시 된 것과 중복되는 거라서 그렇게 표시했고요.
어디에서의 위치를 다룰 것이냐도 중요한데요. 평면과 공간에서 각 항목들의 위치 관계를 따져요. 그러니까 점과 직선의 위치 관계를 따지는데 이걸 평면에서의 위치 관계, 공간에서의 위치 관계 이렇게 2번 다루죠.
다만 평면에서 평면의 위치 관계를 다룰 수 없으므로 평면과 다른 항목의 위치 관계는 공간에서만 다뤄요. 다시 정리해보죠.
평면 | 공간 | |||||
점 | 직선 | 평면 | 점 | 직선 | 평면 | |
점 | X | O | X | X | O | O |
직선 | - | O | X | - | O | O |
평면 | X | X | X | - | - | O |
그러니까 총 7가지 위치 관계를 다뤄요.
평면 | 공간 |
평면에서 점과 직선의 위치 관계 평면에서 두 직선의 위치 관계 |
공간에서 점과 직선의 위치 관계 공간에서 두 직선의 위치 관계 공간에서 점과 평면의 위치 관계 공간에서 직선과 평면의 위치 관계 공간에서 두 평면의 위치 관계 |
이차함수의 그래프와 직선의 위치관계
보통 도형에서의 위치관계는 수직, 평행 등을 묻는데 이차함수의 그래프와 직선의 위치관계는 그런 게 아니에요. 교점이 몇 개 생기느냐를 말하죠. 앞서 했던 이차함수의 그래프와 이차방정식의 실근의 내용과 비슷하니까 별로 어렵지는 않을 거예요. 거의 한 쌍둥이라고 할 수 있어요.
이차함수 그래프의 대략적인 모습과 직선을 그리면 조금 더 쉽게 이해할 수 있으니까 그림도 함께 외우세요.
이차함수의 그래프와 직선의 위치관계
이차함수의 그래프와 직선의 위치관계는 이차함수의 그래프와 이차방정식의 실근에서 했던 내용을 살짝만 바꾸면 돼요.
이차함수 y = ax2 + bx + c (a ≠ 0) 그래프와 x축의 교점의 x 좌표
= 이차방정식 ax2 + bx + c = 0 (a ≠ 0)의 해
중학교 2학년 때 직선의 방정식, 일차함수와 일차방정식에서 직선의 방정식에 대해서 잠깐 공부한 적이 있어요. x축은 식으로 나타내면 y = 0이라는 직선의 방정식으로 나타낼 수 있죠? x축도 직선이니까 이걸 확장하면 이차함수의 그래프와 직선의 위치관계를 구할 수 있는 거죠.
이차함수 y = ax2 + bx + c (a ≠ 0)와 x축이 몇 개의 교점을 가지느냐를 알아볼 때 어떻게 했나요? x축이 y = 0이니까 이걸 이차함수 식에 대입해서 이차방정식을 만들고, 판별식 D의 부호를 구했죠? D > 0이면 교점이 2개, D = 0이면 교점이 1개, D < 0이면 교점이 0개예요.
이차함수 y = ax2 + bx + c (a ≠ 0)와 직선 y = mx + n 사이의 관계를 구할 때도 똑같아요. 직선 y = mx + n를 이차함수 y = ax2 + bx + c에 대입해서 이차방정식을 만들고, 판별식의 부호를 구하면 교점의 개수를 알 수 있어요.
ax2 + bx + c = mx + n
ax2 + (b - m)x + c - n = 0
위와 같은 식을 얻을 수 있는데, 이 식은 x에 대한 이차방정식이죠. x에 대한 이차방정식의 해의 개수는 판별식을 이용해서 구할 수 있어요. 해의 개수와 교점의 개수가 같으니까 해의 개수를 구해보죠.
D > 0 ⇔ 서로 다른 두 실근 ⇔ 교점 2개 ⇔ 서로 다른 두 점에서 만난다.
D = 0 ⇔ 서로 같은 두 실근(중근) ⇔ 교점 1개 ⇔ 한 점에서 만난다. (접한다.)
D < 0 ⇔ 서로 다른 두 허근 ⇔ 교점 0개 ⇔ 만나지 않는다.
이차함수의 그래프와 직선 둘 다좌표평면 위에 있어서 실수 범위에서만 다루기니까 허근은 해로 인정하지 않아요. 그래서 D < 0이면 해가 0개고, 교점도 0개입니다.
위 내용을 표로 정리해 볼게요.
이차함수 y = ax2 + bx + c(a ≠ 0)의 그래프와 y = mx + n의 위치관계 → ax2 + (b - m)x + c - n = 0의 판별식 D 이용 | |||
판별식 | D > 0 | D = 0 | D < 0 |
위치관계 | 서로 다른 두 점에서 만난다. | 한 점에서 만난다. (접한다.) | 만나지 않는다. |
그래프 | |||
교점의 개수 | 2개 | 1개 | 0개 |
표에서는 a > 0일 때의 그래프만 그렸는데, a < 0이면 그래프가 위로 볼록이니까 그림을 180° 뒤집으면 돼요.
이차함수 y = x2 + 3x - 3의 그래프와 접하고, 기울기가 1인 직선의 방정식을 구하여라.
기울기가 1이라고 했으니까 직선은 y = x + b가 되겠네요.
이차함수의 그래프와 직선의 위치관계에서는 판별식을 이용하는데, D > 0이면 서로 다른 두 점에서 만나고, D = 0이면 한 점에서 만나고, D < 0이면 만나지 않아요.
이 직선이 y = x2 + 3x - 3의 그래프와 접한다고 했으니까 D를 이용해서 b를 구해보죠.
x2 + 3x - 3 = x + b
x2 + 2x - 3 - b = 0
D/4 = 12 - (-3 - b) = 0
1 + 3 + b = 0
b = -4
따라서 구하는 직선의 방정식은 y = x - 4가 되겠네요.
함께 보면 좋은 글
이차함수의 그래프와 이차방정식의 실근
이차함수, 이차함수 총정리
이차함수의 최댓값과 최솟값, 이차함수의 최대최소
원과 직선의 위치관계
두 직선의 위치관계 - 평행, 일치, 수직
연립방정식 - 연립이차방정식의 풀이
점과 직선사이의 거리 공식, 증명, 유도
좌표평면 위의 한 점과 직선 사이의 거리 공식을 유도해보고, 문제를 풀어볼 거예요. 공식의 유도과정이 조금 복잡하니까 집중해서 잘 보세요.
점과 직선 사이의 거리 공식을 유도할 때, 앞서 했던 좌표평면 위의 두 점 사이의 거리, 직선의 방정식 구하기, 두 직선의 위치관계 등을 총동원하니까 앞의 내용도 잘 기억하고 있어야 해요.
공식의 유도는 어렵지만, 공식 자체는 어렵지 않으니까 외우기 어렵지는 않을 거예요. 공식만 외우면 문제 푸는 건 쉽게 풀 수 있어요.
점과 직선 사이의 거리 공식
점 P(x1, y1)와 직선 ax + by + c = 0 (a ≠ 0, b ≠ 0) 사이의 거리를 구해볼까요? 점 P에서 직선에 수선을 긋고 수선의 발을 H(x2, y2)라고 해보죠. 거리는 가장 가까운 직선의 길이와 같아요. 가장 가까운 직선은 수선이고요.
(점 P와 직선 ax + by + c = 0 사이의 거리) = (직선 PH의 길이)
직선 PH는 두 점 P(x1, y1)와 H(x2, y2)를 지나는 직선이에요. 두 점을 지나는 직선의 방정식 공식에 넣어보면,
이번에는 ax + by + c = 0을 표준형으로 바꿔보죠.
y = -x -
직선 PH와 직선 ax + by + c = 0은 서로 수직이에요. 두 직선의 위치관계에서 두 직선이 서로 수직이면 (기울기의 곱) = -1이라고 했어요.
- ×
= -1
a(y2 - y1) = b(x2 - x1)
= k라고 놓으면
x2 - x1 = ak, y2 - y1 = bk ……… ①
x2 = x1 + ak, y2 = y1 + bk
H(x2, y2)는 ax + by + c = 0위의 점이므로
ax2 + by2 + c = 0
a(x1 + ak) + b(y1 + bk) + c = 0 (∵ ①)
ax1 + a2k + by1 + b2k + c = 0
(a2 + b2)k + ax1 + by1 + c = 0
(a2 + b2)k = -ax1 - by1 - c
k = - ……… ②
(점 P와 직선 ax + by + c = 0 사이의 거리) = (직선 PH의 길이)이므로 두 점 사이의 거리 공식을 이용하여 직선 PH의 길이를 구해보죠. 풀이 중간에 ①, ②를 이용할 거예요.
점 (x1, y1)과 직선 ax + by + c = 0 사이의 거리 d
점 (2, 3)과 직선 3x + 4y - 3 = 0 사이의 거리를 구하여라.
함께 보면 좋은 글
두 점 사이의 거리, 좌표평면위의 두 점 사이의 거리
삼각형의 무게중심의 좌표, 무게중심 공식
직선의 방정식, 직선의 방정식 구하기
직선의 방정식의 일반형, 직선의 방정식의 표준형
두 직선의 위치관계 - 평행, 일치, 수직
두 직선의 교점을 지나는 직선의 방정식
[중등수학/중1 수학] - 수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리
함수 그래프, 함수의 그래프 특징 비교
함수와 좌표평면에 대해서 알아봤어요. 이제 이 둘을 결합해보죠. 그게 바로 함수의 그래프에요.
함수별로 그래프를 그리는 방법과 특징이 달라요. 공통점과 차이점을 잘 이해하고 있어야 해요.
함수는 식으로 나타낼 수도 있고, 그래프로 나타낼 수도 있어요. 함수를 보고, 함수의 그래프를 그릴 수도 있어야 하고, 반대로 함수 그래프를 보고 함수식을 찾을 수도 있어야 해요.
이 글에서는 함수의 그래프가 뭔지, 함수 그래프는 어떻게 그리는 지, 함수별로 그래프는 어떻게 다른지를 비교해볼 거예요.
함수의 그래프
y = 2x라는 함수가 있을 때, (-3, -6), (-2, -4), (-1, -2), (0, 0), (1, 2), (2, 4), (3, 6) 같은 순서쌍을 만들 수 있어요. 이 순서쌍들을 좌표평면에 나타내 보면 아래 그림처럼 되지요.
그런데 x가 정수일 때 뿐 아니라 유리수일 때도 순서쌍을 만들 수 있겠죠? 0.1, 0.11, 0.111, …, 0.2, 0.22, … 처럼요. 그러면 이런 x에 대응하는 y값들을 구해서 순서쌍을 만들고, 이 순서쌍을 좌표평면에 나타내면 점들이 모여서 선이 돼요. 이렇게 함수에서 만들 수 있는 순서쌍들을 좌표평면에 나타낸 것을 함수의 그래프라고 해요.
y = 2x의 함수에서 순서쌍을 만들어서 좌표평면에 나타내면 아래와 같은 그래프를 그릴 수 있어요.
x, y의 범위를 좁게 해서 함수의 그래프를 그려서 그렇지 실제로는 왼쪽 아래와 오른쪽 위로 계속 이어지는 그래프에요.
함수 y = ax (a ≠ 0)의 그래프
위에서 그렸던 y = 2x의 그래프가 바로 a = 2인 y = ax 형태의 그래프죠? 어떤 특징이 있나요? 일단 원점 O(0, 0)를 지나고 오른쪽 위로 향하는 직선이에요. 제1사분면과 제3사분면을 지나는 그래프네요.
이번에는 y = -2x의 그래프를 그려보죠. 마찬가지로 순서쌍을 만들고 그 순서쌍을 좌표평면에 찍어서 나타내요.
y = -2x의 그래프도 원점 O (0, 0)를 지나요. 그리고 오른쪽 아래로 향하는 직선이고, 제2사분면과 제4사분면을 지나네요.
함수 y = ax (a ≠0)의 그래프에서 x = 0이면 y = 0이니까 원점 O(0, 0)를 지나요. 그리고 a > 0이면 x와 y의 부호가 같죠? 그래서 제1사분면과 제3사분면을 지나는 거예요. 반대로 a < 0이면 x의 부호와 y의 부호가 반대라서 제2사분면과 제4사분면을 지나는 거죠.
a > 0 | a < 0 |
---|---|
원점 (0, 0)을 지나는 직선 | |
오른쪽 위로 향하는 직선 | 오른쪽 아래로 향하는 직선 |
제1사분면, 제3사분면 | 제2사분면, 제4사분면 |
함수 y = ax (a ≠ 0) 그래프 그리는 법
함수 y = ax (a ≠ 0)의 그래프는 원점을 지나는 직선이에요. 직선은 점 두 개만 있으면 그릴 수 있어요. y = ax의 그래프는 원점 O를 지나니까 원점이 아닌 다른 점의 좌표 하나만 더 알면 그릴 수 있다는 얘기예요.
y = 2x의 그래프를 예로 들면, 원점 (0, 0)과 (1, 2) 두 점을 연결해서 그리면 돼요. 굳이 x = 2, 3, 4, … 이런 점들의 순서쌍을 구할 필요가 없다는 뜻이죠. y = -2x도 원점 (0, 0)과 (1, -2) 두 점을 연결해서 그래프를 그릴 수 있어요.
함수
(a ≠ 0)의 그래프
이번에는 (a ≠ 0)의 함수의 그래프는 어떤 특징이 있는지 알아볼까요?
y = 그래프를 그려보죠.
먼저 순서쌍을 찾아보면 …, (-12, -1), (-6, -2), (-4, -3), (-3, -4), (-2, -6), (-1, -12), (1, 12), (2, 6), (3, 4), (4, 3), (6, 2), (12, 1), …이 있네요. 물론 중간마다 x = 0.1, 0.11, …, 0.2, 0.22, … 같은 순서쌍도 찾을 수 있겠죠. 이런 점들을 좌표평면에 표시하면 아래처럼 돼요. 직선이 아니라 x축, y축에 가까워지면서 한없이 뻗어 나가는 곡선이 2개가 그려졌어요. 이 곡선은 제1사분면과 제3사분면을 지나네요.
y = -의 그래프도 그려보죠.
먼저 순서쌍을 찾으면 …, (-12, 1), (-6, 2), (-4, 3), (-3, 4), (-2, 6), (-1, 12), (1, -12), (2, -6), (3, -4), (4, -3), (6, -2), (12, -1), …이 있네요. 마찬가지로 정수가 아니라 유리수 순서쌍도 무수히 많을 거고요. 좌표평면에 점을 찍어봤더니 아래 그림처럼 그래프가 그려졌어요. x축, y축에 가까워지면서 한없이 뻗어 나가는 2개의 곡선인데, 곡선은 제2사분면과 제4사분면을 지나가요.
함수 (a ≠ 0)에서 분수의 분모인 x는 0이 될 수 없으니까 y축과 만나지 않아요. 또 a ≠ 0이므로 y ≠ 0이어서 x축과도 만나지 않죠. 대신 x축, y축에 한없이 가까워지지만 할 뿐이에요. x ≠ 0, y ≠ 0이니까 원점도 지나지 않죠. 모양도 직선이 아니라 곡선이에요. 그리고 a > 0이면 x와 y의 부호가 같으니까 제1사분면과 제3사분면을 지나요. 반대로 a < 0이면 x의 부호와 y의 부호가 반대라서 제2사분면과 제4사분면을 지나는 거죠.
a > 0 | a < 0 |
---|---|
x축, y축에 한없이 가까워지는 한 쌍의 곡선 | |
제1사분면, 제3사분면 | 제2사분면, 제4사분면 |
함수
(a ≠ 0)의 그래프 그리기
는 직선이 아니라 곡선이라서 가능하면 많은 순서쌍을 찾아야 해요. 그래서 그 순서쌍을 좌표평면에 나타내고, 곡선으로 연결하는 거죠. 기본적인 형태는 같아요. 지나는 점만 다르다고 생각하면 돼요.
몇 번 연습해보면 그릴 수 있어요.
다음에 그려진 함수의 그래프를 보고, 함수를 구하여라.
(1)은 제2사분면과 제3사분면을 지나는 직선이에요. y = ax의 그래프인데, a < 0인 그래프죠. 원점 O와 (1, -3)을 지나요. y = ax에 x = 1, y = -3을 대입하면 a를 구할 수 있어요.
y = ax
-3 = a × 1
a = -3
y = -3x의 그래프네요.
(2)는 제1사분면과 제3사분면을 지나는 곡선이에요. 의 그래프라는 얘기죠. 이 그래프는 (1, 5)를 지나네요. x = 1, y = 5를 대입해보죠.
의 그래프군요.
함께 보면 좋은 글
함수의 뜻과 함숫값, 함수의 정의
정비례와 반비례 - 함수의 관계식
순서쌍과 좌표, 좌표평면
함수의 활용
점과 직선의 위치관계, 두 직선의 위치관계
점과 선, 각 등에서 쭉 공부해오고 있는데요.
이제는 점과 선의 위치 관계에 대해서 공부할 거예요. 서로 어떤 위치에 있는가인데 어렵게 생각하지 마세요. 서로 만나느냐 만나지 않느냐 평행하냐를 따지는 거예요.
예를 들어, 두 직선이 만나는지, 두 직선이 평행한지, 두 직선이 일치하는지를 구분하는 거죠.
지금 여기서 공부할 내용은 평면에서 점과 직선의 위치관계, 평면에서 두 직선의 위치관계예요.
점과 직선의 위치관계
한 평면 위에 점과 직선이 있을 때 서로 어떤 위치에 있는지 알아보죠.
먼저 점이 직선 위에 있을 때가 있어요. 점이 직선 위에 있다는 말은 직선이 점을 지나간다는 얘기지요. 문제에서 직선 위의 점 어쩌고저쩌고 나오면, 직선이 점을 지나가는 구나 하고 생각하면 돼요.
점이 직선 위에 있지 않을 때도 있겠지요? 이때를 다르게 표현하면, 직선이 점을 지나지 않는다고 표현할 수 있겠죠? 다른 말로 직선 밖의 점이라고 하는데 자주 쓰이는 말은 아니에요.
아래 그림에서 왼쪽은 점이 직선 위에 있는 것으로 직선 위의 점이라고 하고, 오른쪽은 점이 선 위에 있지 않은 것으로 직선 위에 있지 않은 점이라고 말해요.
여기서 말하는 위는 위, 아래 방향이 아니라는 걸 이해해야 해요.
점이 직선 위에 있느냐 없느냐는 직선이 점을 지나느냐 지나지 않느냐로 표현할 수도 있는 거예요.
두 직선의 위치관계
평면에서 두 직선의 위치관계에 대해서 알아볼까요?
평면이라고는 하지만 우리가 익히 아는 그냥 종이 위에 그린 그림이라고 생각하면 쉬워요. 평면이라고 다를 게 없어요.
평면에서 두 직선은 세 가지의 위치관계가 있어요. 첫 번째는 두 직선이 한 점에서 만나는 경우이고, 두 번째는 평행한 경우, 세 번째는 일치하는 경우예요.
직선이 두 점 이상에서 만나면 두 직선이 일치한다고 할 수 있어요. 두 점을 지나는 직선은 하나 밖에 없거든요. 거꾸로 말해 두 직선이 일치하면 두 개 이상의 점에서 만난다고 할 수 있는 거죠.
두 직선이 한 점에서 만나는 경우와 일치하는 경우를 한꺼번에 두 직선이 만나는 경우라고 할 때도 간혹 있어요.
그리고 여기에서 생각하는 평면은 아주아주 넓은 평면이에요. 아래 그림처럼 그려진 평면이 작아서 두 직선이 만나지 않을 때 '직선이 만나지도 않고, 평행도 아니고, 일치하는 것도 아닌데요.' 하는 학생은 없기 바랍니다. 평면을 더 크게 그리면 두 직선은 만나게 되어 있어요. 직선이 끝이 없이 계속되는 것처럼 평면도 끝이 없어요.
함께 보면 좋은 글
평면의 결정 조건
공간에서 두 직선의 위치관계, 평면과 직선의 위치관계
두 점 사이의 거리, 중점
이 글에서는 수학에서 사용하는 거리라는 개념의 정확한 뜻에 대해서 알아볼 거예요. 그 거리 개념을 이용해서 점과 점 사이의 거리도 알아볼 거고요. 두 점의 한가운데 있는 점에 대해서도 알아볼 거예요.
집에서 학교까지의 거리를 말할 때 우리는 보통 우리가 다니는 길을 그대로 갔을 때의 거리를 얘기하죠? 실제 이동한 거리요. 때로는 시간으로 표현하기도 하고요.
그런데 어떤 날은 큰길로 학교에 가고 다른 날은 지름길로 갈 때 이동 거리는 달라질 수 있어요. 이동 거리라는 건 때에 따라 달라질 수도 있다는 거예요.
하지만 수학의 도형에서의 거리는 두 지점 사이의 가장 가까운 거리를 말해요. 사람이 다닐 수 있느냐 없느냐는 절대 고려하지 않지요.
아래 지도에서 빨간색 선은 실제 이동 경로에 따른 거리이고 파란색 선은 거리라고 할 수 있어요.
두 점 사이의 거리
두 점 A, B 사이의 거리는 두 점을 연결하는 무수히 많은 선 중에서 길이가 가장 짧은 선의 길이를 말하는데, 길이가 가장 짧은 선은 선분 AB에요. 따라서 두 점 A, B 사이의 거리는 선분 AB의 길이를 뜻해요.
두 점 A, B 사이의 거리 = 선분 AB의 길이
두 점 A, B 사이의 거리 그러니까 선분 AB의 길이를 기호로 로 표시하는데요. 기본 도형 - 점, 선, 면, 직선, 반직선, 선분에서
는 선분 AB를 나타낸다고 했죠? 이 기호
는 선분 AB이기도 하고, 선분 AB의 길이이기도 해요. 두 가지 뜻이 있어요.
집과 학교 사이의 거리도 마찬가지로 가장 짧은 직선거리를 나타내니까 파란색으로 표시된 선의 길이인 거지요.
중점
중점(中點)은 말 그대로 가운데 있는 점을 말해요. 무엇의 가운데? 두 점의 가운데 있다는 뜻이죠. 보통 알파벳으로 M(Middle point, Median point)이라고 써요
두 점 A, B가 있는데, 중점 M은 두 점의 한가운데에 있으니까 A에서 중점까지의 거리(선분 AM의 길이)와 B에서 중점까지의 거리(선분 BM의 길이)가 같겠죠? 따라서 중점을 정의할 때 가운데 있는 점이라고 하지 않고, 선분 AM과 선분 BM의 길이가 같을 때 점 M을 중점이라고 해요.
M은 중점이니까 선분 AM의 길이는 전체 길이인 선분 AB의 길이의 절반이겠죠? 다른 말로 하면 중점 M은 선분 AB 길이를 이등분한다고 할 수 있는 거죠.
두 점 A, B와 중점 M
거리와 중점은 오직 선분에서만 구할 수 있어요. 직선이나 반직선은 시작점 혹은 끝점이 끝도 없이 계속되니까 거리나 중점을 구할 수 없어요. 직선 위의 두 점 A, B, 반직선 위의 두 점 C, D 사이의 거리나 중점을 구할 수는 있어요. 하지만 이때 두 점이라는 특정한 위치가 정해졌으니까 직선이 아니라 선분 AB, 선분 CD가 되어서 구할 수 있는 거예요.
점 M은 선분 AB의 중점이고 점 N은 선분 BM의 중점이다. 선분 AB의 길이가 20cm일 때 선분 MN의 길이를 구하여라.
M이 선분 AB의 중점이니까 선분 AM의 길이는 전체 길이의 절반이겠죠? 20 ÷ 2 = 10 (cm)예요. =
= 10cm죠. 마찬가지로 점 N은 선분 BM의 중점이니까 선분 MN의 길이는 선분 BM의 절반이겠죠? 10 ÷ 2 = 5 (cm)예요.
=
= 5cm이니까
은 5cm입니다.
함께 보면 좋은 글
기본 도형 - 점, 선, 면, 직선, 반직선, 선분
평각, 직각, 예각, 둔각
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리
작도, 수직이등분선의 작도
기본 도형 - 점, 선, 면, 직선, 반직선, 선분
새로운 단원인 도형 단원이에요.
도형은 그림이 많이 나오니까 그림을 보고 무슨 도형인지 어떤 특징이 있는지 빨리 파악해야 해요.
언제나 마찬가지지만 단원의 첫 부분에는 단원에서 사용할 용어들을 배우지요. 이 글에서는 도형을 이루는 가장 기본적인 것인 점과 선, 면, 직선, 반직선, 선분의 정의에 대해서 정리해 볼게요.
사실 처음 듣는 단어들은 없어요. 그렇다고 뜻을 모르는 것도 아니고요. 다만 좀 더 구체적인 수학적 의미로서 꼭 알고 있어야할 내용이에요.
점, 선, 면
점은 딱히 뭐라고 설명하기가 좀 그렇네요. 그냥 연필로 딱 한 번 찍은 것을 점이라고 하잖아요. 우리가 알고 있는 그 점입니다.
선은 무수히 많은 점이 모여서 이루어진 걸 말해요. 그냥 죽 그은 것처럼 보이지만 아주 많은 점을 아주 가깝게 많이 찍으면 그게 선이 되는 거예요.
조금 더 멋있게(?) 표현하면 점들이 연속적으로 움직인 자리가 바로 선이에요.
면은 무수히 많은 선이 모여서 이루어진 걸 말해요. 보통 우리는 면을 그리면 모서리만 그리죠? 직사각형을 그리면 선을 네 개만 그어서 바깥쪽에는 선이지만 안쪽은 비어있다고 생각하기 쉬운데, 사실 채우지 않았다 뿐이지 선으로 둘러싸인 모든 곳에 선이 그어져 있다고 생각해야 해요.
그래서 면은 선들이 연속적으로 움직인 자리라고 정의해요.
교점과 교선
교점과 교선에서 교는 섞이다는 뜻인데 여기서는 서로 만난다는 뜻으로 해석해요.
교점은 말 그대로 만나는 점이라는 뜻인데, 뭐가 만나느냐? 선과 선이 만나는 점 또는 면과 선이 만나서 생기는 점을 교점이라고 해요.
이때 선과 면은 꼭 반듯한 직선이 아니어도 상관없어요. 곡선이나 휘어진 면이 만나서 생기는 곳도 교점이라고 해요.
교선은 면과 면이 만나서 생기는 선이에요. 면과 면이 만날 때는 만나는 점이 하나만 생기는 것이 아니라 여러 개가 생기는 데, 그 여러 개가 모여서 바로 선이 되는 거죠.
직선, 반직선, 선분
직선은 서로 다른 두 점에 의해서 결정돼요. 그러니까 점이 하나만 있다면 그 점을 지나는 선은 무수히 많이 그릴 수 있어요. 하지만 서로 다른 두 점이 있으면 그 두 점을 모두 지나는 직선은 딱 하나만 생겨요.
그래서 직선을 정의할 때는 서로 다른 두 점을 이용해서 정의합니다.
직선은 서로 다른 두 점 A, B를 지나 한없이 곧게 뻗은 선이에요. 두 점을 지나야 하고 끝이 없이 계속되어야 해요. A, B를 지나지만 어는 한 곳에서 끝나면 직선이라고 하지 않아요. 또 하나 중요한 건 곧게 뻗은 선이어야 한다는 거예요. 중간에 휘어지면 안 돼요.
직선은 지나는 두 점을 이용해서 표시하는데, A, B를 지나기 때문에 알파벳 A와 B를 이용해서 직선 AB라고 하기도 하고 기호로 로 표시하기도 해요. 선이 A와 B를 지나서도 계속되니까 화살표를 양쪽으로 표시하는 거예요. 혹 두 점 A, B가 정의되지 않았거나 간단히 쓰고 싶을 때는 소문자 l(엘)을 써서 직선 l이라고 쓰기도 해요.
반직선은 직선 AB 위의 한 점 A에서 출발해서 점 B쪽으로 곧게 뻗은 선을 말해요. 반직선에서 중요한 것은 출발점이 있다는 거예요. 직선은 점 A을 지나서 계속되어야 하지만 반직선은 점 A를 지나는 것이 아니라 바로 그 위에서 시작한다는 거지요. 넘어가면 안 된다는 얘기에요.
반직선도 마찬가지로 알파벳 A와 B를 이용해서 표시해요. 반직선 AB라고 하기도 하고, 기호로 로 표시하기도 해요. 선이 A에서 출발해서 B쪽 방향으로 계속되니까 B쪽 방향으로 화살표가 하나만 있어요.
선분은 직선 AB 위의 점 A에서 B까지의 부분을 말해요. 점에서 점까지 에요. 점을 넘어가는 건 아닙니다.
선분은 선분 AB라고 하기도 하고, 기호로는 로 표시해요. 선이 A에서 B로 끝나니까 화살표가 없는 그냥 선만 그어요.
반직선 AB()와 반직선 BA(
)는 달라요. 출발점이 다르잖아요. 반직선 AB는 출발점이 A이고, 반직선 BA는 출발점이 B에요. 두 반직선이 서로 같으면 출발점이 같아야 한다는 것도 잊지 마세요.
그 외 직선 AB와 직선 BA는 같고, 선분 AB와 선분 BA도 같아요.
아래 그림을 보고, 직선, 반직선, 선분으로 구분하시오.
위 그램에서는 선 양쪽으로 화살표가 하나도 없지요. 화살표가 어느 방향으로 나 있느냐를 보고 반직선의 방향을 찾기도 하거든요. 하지만 화살표가 표시되는 경우보다 표시되지 않는 경우가 훨씬 많아요. 이때는 선이 점을 지나서 더 이어지는지 아닌 지를 보고 판단해야 해요.
첫 번째 그림은 M, N이라는 두 점이 있는데, 선이 두 점을 모두 지나서도 연결이 되어 있네요. 그래서 이건 직선이고 두 점 M, N을 지나니까 직선 MN()입니다.
오른쪽 위의 그림에서는 점 M에서는 점 위에서 선이 끝나고, 점 N에서는 선이 계속 이어져 있죠? 그래서 점 M에서 출발해서 점 N으로 가는 반직선 MN()이네요.
왼쪽 아래 그림은 반대로 점 M에서는 계속 이어져 있고, 점 N에서는 끝나니까 점 N에서 출발해서 점 M으로 가는 반직선 NM()이고요.
마지막 오른쪽 아래 그림은 선이 모두 두 점에서 끝나니까 선분 MN()이에요.
함께 보면 좋은 글
두 점 사이의 거리, 중점
평각, 직각, 예각, 둔각
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리