표준형
직선의 방정식의 일반형, 직선의 방정식의 표준형
우리 식을 얘기할 때 일반형, 표준형 이런 얘기하죠? 이차함수에서 y = ax2 + bx + c를 이차함수 일반형, y = a(x - p)2 + q를 표준형이라고 했잖아요. 일차방정식은 ax + b = 0, 이차방정식은 ax2 + bx + c = 0 이렇게 썼어요.
직선의 방정식도 마찬가지로 일반형, 표준형이 있어요. 직선의 방정식의 일반형과 표준형을 알아볼텐데, 용어가 크게 중요한 게 아니니까 공식처럼 외우지 말고 그 의미를 잘 이해하세요. 그냥 단순한 용어 정리일 뿐이에요.
직선의 방정식의 일반형
미지수가 x, y 두 개인 일차방정식은 ax + by + c = 0으로 써요. 이 방정식을 직선의 방정식, 직선의 방정식 구하기에서 사용했던 y = ax + b 꼴로 한 번 바꿔보죠.
ax + by + c = 0
by = -ax - c
b ≠ 0이면 양변을 b로 나눌 수 있어요.
기울기는 , y절편은
에요.
이때 a = 0이면 y = 가 되서 x축에 평행한 직선이에요.
b = 0이면 양변을 b로 나눌 수 없지요.
0y = -ax - c
ax = -c
x =
양변을 a로 나눴더니 y축에 평행한 직선이 되는군요.
이때 a = 0이면 어떻게 될까요? b = a = 0이 되어서 c = 0이라는 아무 것도 아닌 게 되어버렸네요.
방정식 ax + by + c = 0 | a ≠ 0 | a = 0 |
b ≠ 0 | 기울기는 |
y = x축에 평행한 직선 |
b = 0 | x = y축에 평행한 직선 |
모양을 바꾸고 나니 모두 직선이라는 것을 알 수 있죠?
보통 좌변에 모든 항을 이항하고 우변에 0만 있는 형태를 일반형이라고 해요. 미지수가 2개인 방정식은 미지수가 x, y이고 차수가 1인 방정식인데 그래프가 직선이죠? 그래서 ax + by + c = 0의 꼴을 직선의 방정식의 일반형이라고 해요.
모양을 바꿨던 y = ax + b꼴을 직선의 방정식의 표준형이라고 해요. 기울기와 x, y절편을 쉽게 알아볼 수 있는 형태지요.
함께 보면 좋은 글
직선의 방정식, 직선의 방정식 구하기
[중등수학/중2 수학] - 직선의 방정식, 일차함수와 일차방정식
[중등수학/중2 수학] - 축에 평행한 직선의 방정식
[중등수학/중2 수학] - 일차함수 식 구하기, 직선의 방정식 구하기
[중등수학/중2 수학] - 그래프를 보고 직선의 방정식 구하기
이차함수의 활용
이차함수의 마지막 이차함수의 활용입니다. 이차함수는 1학기의 마지막 단원이니까 오늘 내용만 하면 1학기 수학이 다 끝나네요.
활용은 모든 단원에서 하지만 원리는 같아요. 구하는 미지수가 뭔지 찾고, 식 세우고, 계산하는 거죠.
이차함수의 활용은 그런 면에서 이차방정식의 활용과 비슷한 유형의 문제가 많이 나와요. 이차방정식의 활용을 열심히 공부했던 학생이라면 어렵지 않게 느껴질 겁니다.
이차함수의 활용
이차함수의 활용 푸는 순서
- x, y 정하기
문제를 잘 읽고 문제에서 구하고자 하는 것을 x, y로 놓는다. - 함수식 만들기
x, y의 관계를 잘 나타낼 수 있는 식을 만든다. - 답 구하기
함수식을 풀거나 그래프를 이용하여 구하는 답을 찾는다. - 확인하기
구한 답이 문제의 조건에 맞는지 확인한다.
함수의 활용 문제에서 대부분 변하는 값을 x로 놓아요. 시간이라든가 길이 같은 게 되죠. 그리고 x에 따라 바뀌는 종속적인 값을 y로 놓아요. 시간에 따라 바뀌는 온도, 가로 길이에 따라 바뀌는 넓이 같은 거죠.
이차함수의 활용에서는 최대, 최소를 구하는 문제가 많이 나오거든요. 최대/최소를 직접 구하거나 최댓값, 최솟값을 가질 때 변수의 값을 구하는 문제요. 따라서 일반형이 아닌 표준형을 많이 사용해요.
또 표준형 y = a(x - p)2 + q에서 a에 따라서 최댓값, 최솟값 중 하나만 가지니까 a의 부호도 잘 보죠.
두 수의 합을 주고 곱을 구하는 문제
두 수의 합의 관계식을 주고, 곱의 최댓값을 구하거나 곱이 최대일 때 두 수를 구하는 문제 유형이에요.
실제로 두 수를 주는 건 아니고 두 수의 관계식을 주는 거죠. 예를 들어 두 수의 합이 10이다. 두 수의 차가 20이다 이런 식으로요.
한 수를 x라고 놓으면 다른 수는 관계식에서 구할 수 있어요. 두 수의 합이 10일 때, 한 수를 x라고 놓으면 다른 한 수는 10 - x가 되는 거지요. x(10 – x)는 두 수의 곱이 되겠죠?
합이 16인 두 수의 곱이 가장 클 때 그때의 두 수와 곱의 최댓값을 구하여라.
한 수를 x라고 놓으면 다른 한 수는 16 - x가 되겠죠? 곱은 x(16 - x)가 될 거고요.
y = x(16 - x)
y = 16x - x2
y = -x2 + 16x
y = -(x2 - 16x)
y = -(x2 - 16x + 82 - 82)
y = -(x - 8)2 + 64
x = 8일 때 곱이 최대가 되고 그 때 곱은 64네요. 한 수가 8이니까 다른 한 수는 16 - 8 = 8이겠고요. 답은 두 수는 8, 8, 곱의 최댓값은 64가 되겠습니다.
도형의 둘레, 넓이 문제
자주 나오는 유형 중 하나가 도형의 둘레와 넓이에 관한 문제예요. 이 유형도 위의 유형과 같아요. 도형의 둘레는 가로, 세로 길이의 합이고 도형의 넓이는 가로, 세로 길이의 곱이잖아요.
둘레의 길이가 36cm인 사각형의 넓이가 최대가 되도록 하는 가로, 세로 길이를 구하여라.
가로, 세로 길이를 구하라고 했으니까 가로를 x, 세로를 y로 놓으면 될까요? 그렇게 하지 않아요. 가로를 x로 놓으면 가로 x에 따라 바뀌는 넓이를 y로 놓는 거예요.
가로를 x라고 놓으면 세로는 둘레의 길이에서 구할 수 있어요. 둘레는 2 × (가로 + 세로) = 36이니까 세로 길이는 18 - x네요.
직사각형의 넓이는 가로 × 세로니까 y = x (18 - x)라는 함수식을 세울 수 있어요
y = x(18 - x)
y = -x2 + 18x
y = -(x2 - 18x)
y = -(x2 - 18x + 92 - 92)
y = -(x - 9)2 + 81
x = 9일 때 최댓값 81을 가지므로 가로가 9cm일 때 넓이가 최대예요. 가로가 9cm니까 세로는 18 - 9 = 9cm군요.
가로, 세로 길이가 모두 9cm인 정사각형일 때 넓이가 최대네요.
y = ax² + bx + c의 그래프, 이차함수 일반형
이차함수의 그래프에 대해서 공부하고 있는데, y = a(x - p)2 + q꼴 이었어요. 이런 형태를 이차함수의 표준형이라고 해요.
이차방정식에서는 ax2 + bx + c = 0 꼴을 이차방정식의 일반형이라고 하는데, 이차함수에도 일반형이 있어요. 이차함수의 일반형은 이차방정식 우변의 0을 y로 바꾸고, 좌우변을 바꾼 y = ax2 + bx + c이에요.
이차함수의 일반형 y = ax2 + bx + c
y = ax2 + bx + c의 특징을 먼저 알아볼까요?
이차함수 y = a(x - p)2 + q의 그래프에서 그래프의 모양과 폭을 결정하는 건 뭐죠? 이차항의 계수인 a죠. 일반형에서도 이차항의 계수가 그래프의 폭과 모양을 결정합니다.
y = ax2+ bx + c에서 이차항의 계수는 a이고 a > 0이면 그래프는 아래로 볼록, a < 0이면 위로 볼록이에요. 또 |a|가 클수록 그래프의 폭은 좁아집니다.
x절편은 y = 0일 때의 x좌표죠? y = 0을 넣어볼까요? 0 = ax2 + bx + c가 되어서 이차방정식의 해가 x절편이 되는 걸 알 수 있어요.
y절편은 x = 0일 때의 y좌표죠? x = 0을 넣어보면 y = c가 나와요.
일반형은 표준형보다 x, y 절편 찾기가 쉬워요.
표준형은 꼭짓점이나 축의 방정식, y값의 범위를 알아보기가 쉽죠. y = a(x - p)2 + q에서 꼭짓점은 (p, q)라는 걸 알 수 있잖아요.
그러니까 꼭짓점을 찾을 때는 표준형, y절편을 찾을 때는 일반형이 편하겠죠. 그래프의 모양이나 폭은 어떤 것이든 상관없고요.
그런데 함수식을 두 가지 형태로 다 주는 건 아니잖아요. 식이 표준형이면 x = 0, y = 0을 대입해서 x, y 절편을 찾을 수 있어요. 하지만 일반형일 때는 그 상태 그대로 꼭짓점이나 y값의 범위를 찾을 방법이 없죠.
그래서 일반형을 표준형으로 바꿔야 해요.
완전제곱식을 이용한 이차방정식의 풀이
일반형은 x에 관해 내림차순으로 쓰인 식이고, 표준형은 완전제곱식을 포함하고 있는 식이에요. 그러니까 완전제곱식 + 상수항의 꼴이죠.
일반형을 완전제곱식으로 바꾸는 걸 우리는 이미 해봤어요. 바로 “완전제곱식을 이용한 이차방정식의 풀이”에서요.
완전제곱식을 이용한 이차방정식의 풀이에서 어떻게 했는지 보죠.
- 이차항의 계수로 양변을 나눈다.
- 상수항을 우변으로 이항
을 양변에 더해준다.
- 좌변을 완전제곱식으로 인수분해: (x + p)2 = k
- 제곱근을 이용하여 해를 구한다.
x2 - 2x - 6 = 0
기억나죠? 정말 많이 해봤던 문제잖아요.
y = ax2 + bx + c를 y = a(x-p)2 + q로 바꾸기 (일반형을 표준형으로)
이차방정식에서 완전제곱식을 만들었던 것과 이차함수의 일반형을 표준형으로 바꾸는 건 80% 비슷해요.
다른 건 두 가지. 위의 순서에서 2번에 있는 상수항을 우변으로 이항하는 게 없어요. 그리고 해를 구하는 게 아니니까 5번 단계가 필요 없어요. 두 단계가 줄었으니까 더 편하겠죠?
그다음에는 이차항의 계수로 양변을 나눈다고 했는데, 이걸 “이차항의 계수로 이차항과 일차항을 묶는다.”로 바꾸면 돼요. 인수분해한다는 얘기예요. 을 양변에 더해주는 건 좌변에만 한 번 더해주고 빼주는 걸로 바꿔요. 그 외 나머지는 다 똑같아요.
연습을 한번 해보죠.
y = 2x2 + 4x + 5의 꼭짓점의 좌표과 축의 방정식을 구하여라.
먼저 이차항의 계수로 이차항과 일차항을 묶어요.
y = 2(x2 + 2x) + 5
을 더해줘야 하는데 어디에 더하냐면 괄호로 묶인 부분 안에 더해줘요. 그리고 원래 식에 없던 값을 더해줬으니까 한 번 빼줘야 원래 식과 같은 식이 되겠죠? 빼주는 것도 괄호 안에 빼줘요. 문제에서는 (2 / 2)2 = 1을 더해주고 빼줘야겠네요.
y = 2(x2 + 2x + 1 - 1) + 5
괄호 안에 있는 부분 중 앞의 세 항(x2 + 2x + 1)을 완전제곱식으로 바꿔요.
y = 2{(x + 1)2 - 1} + 5
괄호 안에는 완전제곱식과 상수항이 남아있는데, 이 상수항을 괄호 밖으로 빼네요. 이때 주의해야할 건 괄호 앞에 이차항의 계수였던 2가 있으니까 분배법칙을 이용해서 빼내야 한다는 거예요.
y = 2(x + 1)2 - 2 + 5
y = 2(x + 1)2 + 3
완전제곱식을 이용한 이차방정식의 풀이와 거의 비슷하죠? 이렇게 표준형으로 바꿨더니 꼭짓점의 좌표와 축의 방정식을 구할 수 있겠네요. 꼭짓점은 (-1, 3), 축의 방정식은 x = -1이군요.
한 문제 더 해보죠.
y = -x2 + 4x -2의 꼭짓점과 y절편을 구하여라.
꼭짓점은 표준형에서 y절편은 일반형에서 구하는 게 편해요.
문제의 식이 일반형이니까 y절편부터 구해보죠. 이차함수 y = ax2 + bx + c에서 x = 0일 때 y 좌표가 y절편이니까 –2네요.
꼭짓점을 구하기 위해서 일반형을 표준형으로 바꿔보죠.
꼭짓점의 좌표는 (2, 2)이고 y 절편은 -2네요.