축에 평행한 직선

일차함수 식 구하기, 직선의 방정식 구하기에서는 그래프의 특징을 설명해주는 내용을 보고 직선의 방정식(일차함수 식)을 구했어요.

이번에는 그런 설명 없이 그래프를 보고 일차함수 식을 구하는 내용이에요.

그래프를 보고 어떤 특징을 알아내는가가 중요한 것이지 둘 사이에는 차이가 전혀 없어요. 그래프에서 파악할 수 있는 건 모두 파악하는 것이 좋아요. 그리고 그 파악된 내용을 기본으로 어떤 방법으로 직선의 방정식을 구할까 결정하세요.

일차함수 식을 구하는 방법은 네 가지가 있어요.

  1. 기울기와 y절편을 알 때
  2. 기울기와 한 점의 좌표를 알 때
  3. 두 점의 좌표를 알 때
  4. x절편, y절편을 알 때

일반적으로 그래프만 봤을 때는 기울기를 알아내기가 어려워요. 대신 점의 좌표는 알아내기 쉽죠. 그래서 제일 많이 사용하는 방법이 3번이에요. 물론 공부를 열심히 한 학생이라면 그래프에서 두 점의 좌표만 보고도 기울기를 바로 구할 수 있을 거예요.

다음 그래프를 보고 직선의 방정식을 구하여라.
그래프를 보고 직선의 방정식 구하기 - 두 점의 좌표를 알 때

먼저 눈에 확 띄는 건 (-3, -4), (3, 2)라는 두 점의 좌표에요. 조금 더 자세히 보면 (0, -1), (1, 0)을 지나는 것도 알 수 있어요.

기울기를 구해보죠.
기울기 = 

기울기가 1이니까 함수는 y = x + b라고 쓸 수 있겠네요. 여기에 (3, 2)를 대입해보죠.

2 = 3 + b
b = -1

결국 구하려는 직선의 방정식은 y = x - 1이군요.

다음 그래프를 보고 직선의 방정식을 구하여라.
그래프를 보고 직선의 방정식 구하기 - x, y 절편을 알 때

그래프에서는 x절편이 –2, y절편이 2라는 걸 알 수 있어요.

두 점 (-2, 0), (0, 2)을 지나니까 이걸 이용해서 직선의 방정식을 구해보죠.

기울기 = 

기울기가 1이고 y절편이 2이니까 직선의 방정식은 y = x + 2이에요.

축에 평행한 직선의 방정식

축에 평행한 직선의 방정식에서 배웠던 내용이에요.

축에 평행한 방정식에서는 기울기를 구할 필요가 없어요. 특히 y축에 평행한 직선의 방정식은 기울기라는 게 없으니까 구하려고 해도 구할 수도 없어요.

x축에 평행한 직선은 모든 y값이 하나로 일정해요. 그래서 y = n 꼴로 그냥 쓰면 돼요. 반대로 y축에 평행한 직선의 x값은 모두 일정해서 x = m이라고 쓰면 돼요.

다음 그래프를 보고 직선의 방정식을 구하여라.
그래프를 보고 직선의 방정식 구하기 - x축에 평행한 직선의 방정식

그래프는 x축에 평행한 직선이고 모든 y값이 3이에요. 따라서 직선의 방정식은 y = 3입니다.

다음 그래프를 보고 직선의 방정식을 구하여라.
그래프를 보고 직선의 방정식 구하기 - y축에 평행한 직선의 방정식

그래프는 y축에 평행한 직선이고 모든 x값이 2이에요. 따라서 직선의 방정식은 x = 2입니다.

함께 보면 좋은 글

일차함수의 그래프
일차함수와 그래프 - x절편, y절편
일차함수와 그래프 - 기울기
직선의 방정식, 일차함수와 일차방정식
축에 평행한 직선의 방정식
일차함수 식 구하기, 직선의 방정식 구하기

정리해볼까요

그래프를 보고 직선의 방정식 구하기

  • 그래프를 보고 구할 수 있는 내용들을 모두 구하여 아래 방법 중 하나를 택한다.
    1. 기울기와 y절편을 알 때
    2. 기울기와 한 점의 좌표를 알 때
    3. 두 점의 좌표를 알 때
    4. x절편, y절편을 알 때
  • x축에 평행한 직선의 방정식: y = n
  • y축에 평행한 직선의 방정식: x = m
 
그리드형

직선의 방정식, 일차함수와 일차방정식에서 직선의 방정식이라는 용어에 대해서 알아봤어요. 미지수가 2개인 일차방정식 ax + by + c = 0의 순서쌍 (x, y)를 좌표평면에 표시했더니 직선이 된다. 이때 ax + by + c = 0을 직선의 방정식이라고 하고, 일차함수의 그래프와 모양이 같다는 거지요.

이번 글에서는 직선의 방정식 중에서 특이한 모양의 직선을 알아볼 거예요.

바로 x축에 평행한 직선, y축에 평행한 직선이죠. 잘 쓰는 말은 아니지만 다르게 표현하면 x축, y축에 수직인 직선이죠.

x축, y축

먼저 x축을 직선의 방정식으로 표현할 수 있어요. 좌표평면에서 x축은 가로로 되어 있는데, y좌표가 모두 0이에요. x = 1일 때도 y = 0, x = 2일 때도 y = 0이죠. x가 어떤 수가 되더라도 y = 0이에요.

따라서 x축을 직선의 방정식으로 표현하면 y = 0이라는 식으로 나타낼 수 있어요.

y축은 y = 1일 때도 y = 2일 때도 무조건 x = 0이죠. 그래서 y축의 직선의 방정식은 x = 0이에요.

x축에 평행한 직선의 방정식

ax + by + c = 0에서 a = 0, b = 1, c = -1이면 식은 어떻게 되나요?
0 × x + 1 × y - 1 = 0
y = 1

y = 1이라는 직선의 방정식이 되고, … (-2, 1), (-1, 1), (0, 1), (1, 1), (2, 1) … 라는 점을 지나요. 이 점들을 좌표평면에 표시하면 아래처럼 되고, 선으로 연결하면 x축에 평행한 직선이죠. 이 그래프는 y축과 (0, 1)에서 만나고, x축과는 만나지 않아요.

그러니까 y = n (n은 상수) 꼴의 식은 (0, n)을 지나고 x축에 평행한 직선이라고 정리할 수 있겠네요.

기울기라는 건 (y의 증가량) ÷ (x의 증가량)인데 y가 일정해서 y 증가량은 0이므로 기울기는 0인 함수입니다.

x축에 평행한 직선의 방정식, y = n

y축에 평행한 직선의 방정식

ax + by + c = 0에서 a = 1, b = 0, c = -1이면 식은 어떻게 되나요?
1 × x + 0 × y - 1 = 0
x = 1

x = 1이라는 직선이 되고, … (1, -2), (1, -1), (1, 0), (1, 1), (1, 2) … 라는 점을 지나요. x는 무조건 1이고, y값만 바뀌네요. 이 점들을 좌표평면에 표시하면 아래처럼 되고, 선으로 연결하면 y축에 평행한 직선이에요. y축과는 만나지 않고, x축과는 (1, 0)에서 만나네요.

x = m (m은 상수) 의 직선은 (m, 0)을 지나고 y축에 평행한 직선이에요.

기본적으로 함수는 x 하나에 y가 하나만 대응해야해요. 그런데, x = m 꼴 직선의 방정식은 x = 1일 때 y가 무수히 많죠? 그래서 함수라고 할 수 없어요. 기울기 = (y의 증가량) ÷ (x의 증가량)인데, x = m으로 항상 일정해서 x의 증가량이 0, 즉 분모가 0이에요. 따라서 기울기라는 것이 없다는 것도 알아두세요.

y축에 평행한 직선의 방정식, x = m

주의하세요. x축에 평행한 직선은 y = n 꼴이고, y축에 평행한 직선은 x = m 꼴이에요.

x축, y축에 평행한 직선의 방정식 x=m, y=n

함께 보면 좋은 글

일차함수 그래프의 평행과 일치
직선의 방정식, 일차함수와 일차방정식
일차함수 식 구하기, 직선의 방정식 구하기
그래프를 보고 직선의 방정식 구하기

정리해볼까요

축에 평행한 직선의 방정식

  • x = m : (m, 0)을 지나고 y축에 평행
  • y = n : (0, n)을 지나고 x축에 평행
 
그리드형

+ 최근글