시초선

삼각함수라는 새로운 함수를 공부할 거예요. 삼각함수는 쉽게 말해서 삼각비호도법 + 함수예요. 삼각비에서 직각삼각형 세 변의 길이의 비는 각에 대한 일정한 관계가 있었죠? 이 일정한 관계를 함수로 나타낸 것이 삼각함수예요. 삼각비에서는 직각삼각형에서 세 변의 길이의 비를 이용했다면 삼각함수에서는 좌표평면 위의 좌표를 이용하는 차이가 있어요. 또 삼각비에서는 육십분법으로 나타낸 각을 이용했다면 삼각함수에서는 호도법으로 나타낸 각을 이용하죠.

그러니까 삼각함수를 잘하려면 삼각비와 호도법에 대해서 정확히 이해하고 있어야 해요.

삼각함수의 뜻, 삼각함수의 정의

xy좌표평면에 반지름의 길이가 r인 원을 그리고 원 위의 임의의 점을 P라고 해보죠. x축 양의 방향을 시초선으로 하고 동경 가 이루는 각을 θ라고 할 때, ,  , ,θ의 크기에 따라 한 가지로 정해져요.

삼각함수

r ≠ 0일 때, θ, θ, θ는 각각 θ에 대한 함수가 돼요. 이 함수를 차례로 사인함수, 코사인함수, 탄젠트함수라고 하고 기호로 sinθ = , cosθ = , tanθ = 로 나타냅니다. 그리고 이 세 가지를 묶어서 삼각함수라고 해요.

마치 삼각비, sin, cos, tan에서 빗변과 밑변, 높이 사이의 비를 구했던 것처럼 말이죠. 반지름 r을 빗변의 길이, x를 밑변의 길이, y를 높이라고 생각하면 쉬워요. 대신 삼각비에서는 길이의 비여서 사용하는 숫자가 모두 양수였지만 삼각함수에서는 좌표를 이용하므로 음수도 사용한다는 차이가 있어요.

  • sinθ =
  • cosθ =
  • tanθ =

좌표평면 위에서 원점 O와 점 P(-3, -4)를 이은 선분 OP를 동경으로 하는 각을 θ라고 할 때 sinθ, cosθ, tanθ를 구하여라.

삼각함수 예제

= 5네요.

sinθ =
cosθ =
tanθ =

삼각함수 값의 부호

삼각함수 값의 부호는 θ가 나타내는 동경의 위치에 따라 달라져요. θ가 몇 사분면 위의 각인지에 따라 부호가 달라지죠. 이때, r은 반지름이니까 무조건 양수예요. 따라서 삼각함수의 부호에 영향을 주는 요소는 좌표평면에서 x, y의 부호입니다.

삼각함수 값의 부호
제 1 사분면 제 2 사분면 제 3 사분면 제 4 사분면
x, y 부호 x > 0, y > 0 x < 0, y > 0 x < 0, y < 0 x > 0, y < 0
sinθ = + + - -
cosθ = + - - +
tanθ = + - + -

제 1 사분면에서는 세 가지 모두 양수, 제 2 사분면에서는 sinθ만 양수, 제 3 사분면에서는 tanθ만 양수, 제 4 사분면에서는 cosθ만 양수네요. 1, 2, 3, 4 사분면 순서대로 양수인 것들만 뽑아서 올 - 싸 - 탄 - 코 (all - sin - tan - cos)라고 외워요.

각 함수별로 보면 양수가 되는 사분면이 2개, 음수인 사분면이 2개씩 있어요. 사인함수는 제 1, 2, 사분면이 양수이고, 코사인함수는 제 1, 4 사분면이 양수, 탄젠트함수는 제 1, 3 사분면이 양수예요.

함께 보면 좋은 글

호도법, 라디안(radian)
일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각
부채꼴 호의 길이와 넓이, 호도법이용
[중등수학/중3 수학] - 삼각비, sin, cos, tan

정리해볼까요

삼각함수: 사인함수, 코사인함수, 탄젠트함수

  • sinθ =
  • cosθ =
  • tanθ =

삼각함수 값의 부호: 사분면 순서대로 올 - 싸 - 탄 - 코 (all - sin - tan - cos)

 
그리드형

새로운 단원이에요.

이 글에서는 이제까지 우리가 알고 있던 각의 범위를 확장할 거예요. 단순히 각의 크기를 구하는 게 아니라 각의 개념을 다시 정의하고 각을 파악하는 새로운 방법에 대해서 공부할 거예요.

일반각, 시초선, 동경, 사분면 위의 각 등 몇 가지 용어들이 나오는데 그냥 이해만 하면 되고, 굳이 외울 필요는 없어요.

앞으로는 각을 볼 때, 각이 나타내는 여러 가지 의미들을 잘 파악할 수 있어야 해요.

일반각

일반적으로 각은 두 직선 사이의 벌어진 정도를 말해요. 0° ~ 360° 사이의 각으로 나타내죠.

아래 그림에서 의 위치에서 점 O를 중심으로 가 회전할 때, 회전한 정도를 각의 크기라고 하고, 시작하는 선인 를 시초선, 움직이는 선인 를 동경이라고 해요.

일반각 - 시초선, 동경

우리가 이제까지 봐왔던 각은 방향을 고려하지 않았어요. 하지만 동경이 회전하는 방향도 중요하게 고려해야 할 요소예요. 동경 가 시계 반대방향으로 회전하면 양의 방향으로 회전한다고 하고, 시계 방향으로 회전하면 음의 방향으로 회전한다고 해요. 동경 가 양의 방향으로 회전하여 생긴 각을 양의 각, 음의 방향으로 회전해서 생긴 각을 음의 각이라고 합니다.

일반각 - 양의 방향, 음의 방향

방향뿐 아니라 회전횟수에 대해서도 고려해 보죠. 동경 가 어떤 위치에 있을 때 몇 번 회전해서 현재 위치에 있는 지도 중요하겠죠?

일반각

첫 번째 그림에서 한 바퀴도 돌지 않고 각을 만들었다면 각의 크기는 30°라고 할 수 있어요. 하지만 두 번째 그림처럼 한 바퀴 돌고 각을 이루었다면 360° + 30°가 되고, 두 바퀴 돌고 각을 이루었다면 720° + 30°가 되겠죠?

같은 위치에 있는 동경이라고 하더라도 회전한 방향과 회전한 수에 따라 각의 크기가 달라져요. 그래서 동경의 위치만 보고 각의 크기를 나타낼 때는 θ = 360° × n + a° (n은 정수)라고 쓰는데 이를 일반각이라고 합니다.

일반각에서 a°는 양의 최소각을 말하고 대게 0° ~ 360°의 각을 이용해요. 360° × 2 + 1000° 이렇게 나타내지 않고 360° × 4 + 280°로 나타냅니다.

일반각
θ = 360° × n + a° (n은 정수)
0° ≤ a° < 360°

다음을 양의 최소각을 이용하여 일반각으로 나타내어라.
(1) 500°
(2) -500°

일반각은 360° × n + a°로 나타내는 데, 이때 n은 정수이고 0° ≤ a° < 360°의 범위를 가져요.

(1) 500° = 360° × 1 + 140°

(2) 번은 각의 크기는 500°로 같은데 (-)로 음의 각이에요. 회전한 방향이 반대란 얘기죠. n이 음수가 되겠네요.
-500° = 360° × (-1) - 140°
        = 360° × (-2) + 220°

사분면 위의 각

좌표평면 위에서 x축의 양의 방향을 시초선으로 잡을 때 동경 가 있는 사분면의 위치에 따라 각을 제 1 사분면의 각, 제 2 사분면의 각, 제 3 사분면의 각, 제 4 사분면의 각이라고 불러요. 참고로 x, y축은 사분면에 포함되지 않아요.

사분면 위의 각

위 그림에서 가 제 1 사분면에 있으니까 이 각은 제 1 사분면의 각이네요.

함께 보면 좋은 글

[중등수학/중1 수학] - 평각, 직각, 예각, 둔각
[중등수학/중1 수학] - 맞꼭지각, 동위각, 엇각
[중등수학/중1 수학] - 평행선의 성질, 평행선에서 동위각과 엇각

정리해볼까요

일반각

  • θ = 360° × n + a° (n은 정수)
  • 0° ≤ a° < 360°
>>   호도법
 
그리드형

+ 최근글