부채꼴

부채꼴 호의 길이와 넓이를 중학교 1학년 때 구해봤어요. (부채꼴 호의 길이, 부채꼴 넓이) 이때는 각이 육십분법으로 표시되어 있었죠. 이제는 육십분법이 아니라 호도법으로 표시된 각을 이용해서 부채꼴 호의 길이와 넓이를 구해봐요.

공식을 유도하는 과정은 육십분법에서 했던 과정과 똑같아요. 각을 표시하는 방법만 달라지는 거니까 별로 어렵지는 않을 거예요. 앞으로는 육십분법이 아니라 호도법으로 각을 나타낼 거니까 여기에 나오는 공식을 외워두세요.

부채꼴 호의 길이와 넓이

반지름의 길이가 r인 원에서 중심각의 크기가 θ라디안인 부채꼴 호의 길이를 l이라고 하고 넓이를 S라고 해보죠.

부채꼴 호의 길이와 넓이

부채꼴 호의 길이는 중심각의 크기에 비례하므로 원의 둘레와 비례식을 세워보죠.

2π : 2πr = θ : l
l = rθ

원의 넓이와 부채꼴의 넓이도 비례식을 세워볼까요?

2π : πr2 = θ : S

위의 부채꼴 호의 길이에서 l = rθ이므로 이걸 넓이 공식에 대입해보면 이 돼요. rl이라는 공식은 부채꼴 호의 길이, 부채꼴 넓이 공식도 나왔던 공식이에요.

반지름이 r이고 중심각의 크기가 x°인 부채꼴 호의 길이와 넓이는 다음과 같아요.

이글에서는 육십분법을 호도법으로 바꾼 거니까 다른 건 그냥 다 두고 각도를 나타내는 부분만 바꿔보죠. 360°는 2π(라디안), 중심각 x°는 θ(라디안)로 바꿔봐요.

공식을 유도할 수 있겠죠?

부채꼴 호의 길이
반지름이 r이고, 중심각의 크기가 θ인 부채꼴 호의 길이를 l, 넓이를 S라고 하면
l = rθ
S = r2θ = rl

반지름의 길이가 4cm이고 중심각의 크기가 π인 부채꼴의 호의 길이와 넓이를 구하여라.

반지름의 길이가 4cm이고 중심각의 크기가 &pi니까 둘레 l = rθ = 4 × π = 4π(cm)

S = r2θ = × 42 × π = 8π(cm2)

함께 보면 좋은 글

호도법, 라디안(radian)
일반각, 시초선, 동경, 양의 각, 음의 각, 사분면의 각
[중등수학/중1 수학] - 원주율, 원의 둘레, 원의 넓이, 부채꼴 호의 길이, 부채꼴 넓이
[중등수학/중1 수학] - 원과 부채꼴, 호, 현, 활꼴, 중심각

정리해볼까요

부채꼴 호의 길이와 넓이

  • 반지름이 r이고, 중심각의 크기가 θ인 부채꼴 호의 길이를 l, 넓이를 S라고 하면
  • l = rθ
  • S = r2θ = rl
 
그리드형

이제 중1 수학도 막바지에 다랐어요. 얼마 남지 않았으니까 조금 더 힘내세요.

이번 글에서는 각뿔과 원뿔의 겉넓이와 부피에 대해서 알아볼 거예요.

각뿔과 원뿔의 겉넓이는 각기둥과 원기둥의 겉넓이, 부피, 부채꼴의 넓이 구하는 공식 등에 대해서 알고 있어야 이해할 수 있어요.

혹시 잘 기억이 안 난다면 원기둥의 부피와 겉넓이, 각기둥의 부피와 겉넓이부채꼴 넓이를 얼른 보고 오세요.

각뿔의 겉넓이와 부피

각기둥의 겉넓이를 구할 때 전개도로 펼쳐서 구했어요. 그리고 (밑면의 넓이) + (옆면의 넓이)로 구했고요. 각뿔도 마찬가지예요.

각뿔의 겉넓이와 부피, 각뿔의 전개도

각뿔이 각기둥과 다른 점은 밑면이 한 개뿐이고, 옆면은 모두 삼각형이라는 거예요.

밑면은 각뿔의 형태에 따라 다르지만 다각형의 넓이 구하는 방법으로 구할 수 있잖아요.

각기둥에서는 옆면이 직사각형이라서 하나의 큰 직사각형으로 구할 수 있었는데, 각뿔에서는 옆면이 삼각형인 데다 삼각형의 넓이도 제각각이어서 하나씩 구해서 다 더해줘야 하는 불편함이 있어요. 하지만 실제 문제에서는 옆면이 이등변삼각형으로 합동인 경우가 많으니까 하나 구해서 × 4하면 돼요.

주의해야 할 게 있는데, 각뿔의 높이와 옆면인 삼각형의 높이를 잘 구별하세요.

각뿔의 부피는 밑면이 합동이고 높이가 같은 각기둥의 부피의 1/3이니까 각기둥의 부피에 1/3을 곱해서 구해요.

각뿔의 높이가 h일 때
각뿔의 겉넓이 = (밑넓이) + (옆넓이)
각뿔의 부피 =  1/3 × (밑넓이) × (높이) = 1/3Sh

원뿔의 겉넓이와 원뿔의 부피

원뿔을 전개도로 펼쳐보면 아래 그림처럼 부채꼴인 옆면 한 개와 원인 밑면 한 개로 되어 있어요.

원뿔의 겉넓이와 부피, 원뿔의 전개도

원뿔의 넓이도 (밑넓이) + (옆넓이)니까 (원의 넓이) + (부채꼴의 넓이)하면 되겠지요.

밑면은 반지름이 r인 원이니까 넓이는 πr2이에요.

옆넓이인 부채꼴 넓이는 중심각의 크기를 알 때와 부채꼴 호의 길이를 알 때 두 가지 방법으로 구할 수 있는데, 여기서는 부채꼴 호의 길이를 이용한 공식으로 부채꼴의 넓이를 구합니다.

부채꼴의 넓이 = 1/2rl

여기서 r은 부채꼴의 반지름, l은 부채꼴 호의 길이를 말해요. 위 전개도에 나온 r, l과 서로 다른 r, l이죠. 이 부분을 주의하세요.

부채꼴의 반지름은 모선의 길이 l이에요. 부채꼴 호의 길이는 밑면인 원의 둘레와 같아요. 밑면의 반지름이 r이라면 부채꼴 호의 길이는 2πr이죠. 공식에 대입해서 옆면인 부채꼴의 넓이를 구하면 1/2× l × 2πr = πrl이 나와요.

각뿔의 부피가 각기둥의 부피의 1/3이라고 했지요? 원뿔의 부피도 밑면의 반지름과 높이가 같은 원기둥의 부피의 1/3이에요.

원기둥의 부피πr2h였으니까 여기에 1/3을 곱해서 구할 수 있어요.

밑면의 반지름이 r, 높이가 h, 모선의 길이가 l일 때
원뿔의 겉넓이 = (밑넓이) + (옆넓이) = πr2 + πrl
원뿔의 부피 = 1/3 × (밑넓이) × (높이) = 1/3πr2h

함께 보면 좋은 글

원기둥의 부피와 겉넓이, 각기둥의 부피와 겉넓이
구의 부피와 구의 겉넓이
원주율, 원의 둘레, 원의 넓이, 부채꼴 호의 길이, 부채꼴 넓이

정리해볼까요

각뿔의 겉넓이와 부피

  • 각뿔의 겉넓이 = (밑넓이) + (옆넓이)
  • 각뿔의 부피 =1/3× (밑넓이) × (높이)

원뿔의 겉넓이와 부피

  • 밑면의 반지름이 r, 높이가 h, 모선의 길이가 l인 원뿔에서
  • 원뿔의 겉넓이 = πr2 + πrl
  • 원뿔의 부피 =1/3πr2h
 
그리드형

다각형에 이어 이번에는 원이에요.

다각형은 여러 개의 선분으로 둘러싸인 평면도형이었어요.

이번에는 선분이 아닌 것들로 둘러싸인 도형을 공부할 거예요. 바로 원과 그 친구들이죠.

원은 초등학교 때 지름, 반지름, 넓이 구하는 걸 하면서 공부했어요. 그때의 내용이 또 나와요. 하지만 고맙게도 계산은 훨씬 쉬워졌어요. 기대하세요.

원, 호, 현, 활꼴, 부채꼴

은 한 점으로부터 일정한 거리에 있는 점들로 이루어진 도형이에요. 그리고 그 한 점을 원의 중심이라고 하고, 일정한 거리를 우리는 반지름이라고 하지요.

호, 현, 원의 중심, 지름

는 원의 일부분인데, 원 위의 두 점을 양 끝으로 하는 원의 일부를 말해요. 이때 양 끝점이 A, B이면 호 AB라고 부르고 기호로 로 나타내요. 선분 AB는 AB 위에 반듯한 선을 그어서 선분 AB로 표시했는데, 호는 AB 위에 곡선을 그어서 표시해요.

A와 B를 양 끝점으로 하고, 중간에 점 C를 지나는 호는 정확한 경로를 알 수 있게 호 ACB라고 불러요.

은 원 위의 두 점을 이은 선분을 말해요. 현이 지나는 두 점이 AB이면 현 AB라고 부르고 기호로 선분로 표시해요. 현은 반듯한 선분이라서 기호도 그냥 선분 기호를 사용해요.

현 중에서 원의 중심을 지나는 현을 지름이라고 하고, 지름은 현 중에서 길이가 가장 길어요.

부채꼴과 활꼴, 부채꼴의 중심각

활꼴은 이름 그대로 활처럼 생겼어요. 호와 현으로 이루어진 도형을 말해요.

부채꼴은 부채모양처럼 생겼고요. 호와 원의 반지름 두 개로 이루어진 도형이에요. 부채꼴에는 두 반지름이 원의 중심에서 만나서 생기는 각이 있지요? 이 각을 부채꼴의 중심각이라고 불러요.

부채꼴과 중심각

부채꼴의 중심각은 중요한 의미가 있어요. 바로 중심각에 따라 부채꼴 호의 길이와 부채꼴의 넓이가 달라지기 때문이죠.

부채꼴의 중심각

하나의 원이나 합동인 두 원에서

  • 부채꼴의 중심각의 크기가 같으면 호의 길이가 같다
  • 부채꼴의 중심각의 크기가 같으면 부채꼴의 넓이도 같다.
  • 부채꼴의 중심각의 크기가 같으면 현의 길이도 같다.
  • 부채꼴의 중심각 ∝ 부채꼴 호의 길이
  • 부채꼴의 중심각 ∝ 부채꼴의 넓이
  • 부채꼴의 중심각과 현의 길이는 정비례하지 않는다.

위에서 ∝ 표시는 정비례 표시에요. 중심각이 2배, 3배로 커지면 그에 따라 부채꼴 호의 길이도 2배, 3배로 길어진다는 뜻이에요. 부채꼴의 넓이도 마찬가지고요. 단, 현의 길이는 정비례하지 않아요.

아래 그림을 보고 x의 길이를 구하시오.

 

위 그림에서 x는 부채꼴 호의 길이에요. 한 원에서 부채꼴의 중심각과 부채꼴 호의 길이는 정비례한다고 했어요.

위에 있는 부채꼴의 중심각은 40°이고, 호의 길이는 xcm예요. 아래에 있는 부채꼴의 중심각은 120°이고 호의 길이는 9cm고요. 정비례하니까 비례식으로 풀어보죠.

40° : xcm = 120° : 9cm
120° × xcm = 40° × 9cm
x = 40 × 9 ÷ 120
x = 3

x는 3cm네요.

함께 보면 좋은 글

원주율, 원의 둘레, 원의 넓이, 부채꼴 호의 길이, 부채꼴 넓이
다각형 내각의 크기의 합과 외각 크기의 합
원기둥의 부피와 겉넓이, 각기둥의 부피와 겉넓이
원뿔의 겉넓이와 부피, 각뿔의 겉넓이와 부피
[중등수학/중3 수학] - 원뿔의 높이와 부피, 원뿔의 부피 공식

정리해볼까요

원과 호, 현, 활꼴, 부채꼴

  • 원: 평면 위의 한 점으로부터 거리가 일정한 점들로 이루어진 도형
  • 호: 원 위의 두 점을 양 끝으로 하는 원의 일부분
  • 현: 원 위의 두 점을 이은 선분. 현 중에 제일 긴 현은 지름
  • 활꼴: 현과 호로 이루어진 도형
  • 부채꼴: 호와 반지름 두 개로 이루어진 도형. 부채꼴의 중심각

부채꼴의 중심각

  • 부채꼴의 중심각의 크기가 같으면 호의 길이가 같다
  • 부채꼴의 중심각의 크기가 같으면 부채꼴의 넓이도 같다.
  • 부채꼴의 중심각의 크기가 같으면 현의 길이도 같다.
  • 부채꼴의 중심각 ∝ 부채꼴 호의 길이
  • 부채꼴의 중심각 ∝ 부채꼴의 넓이
  • 부채꼴의 중심각과 현의 길이는 정비례하지 않는다.
<<    중1 수학 목차    >>
 
그리드형

+ 최근글