사인법칙, 사인법칙 증명
사인법칙은 공식이에요. 공식이니까 당연히 외워야겠죠? 그리고 사인법칙이 어떻게 유도되었는지 증명할 수 있어야 하고요.
사인법칙 증명 과정에 중학교 때 공부했던 원주각과 원에 내접하는 사각형, 외접, 외접원 등의 내용이 계속 나와요. 증명 자체는 어렵지 않지만 이미 잊어버린 내용일테니까 미리 한 번씩 읽어두세요.
[중등수학/중3 수학] - 원주각과 중심각의 크기, 원주각의 성질
[중등수학/중3 수학] - 원에 내접하는 사각형의 성질, 내대각
사인법칙을 외워두면 중학교 때 삼각비를 이용해서 구했던 것들을 조금 더 쉬운 방법으로 구할 수 있어요.
사인법칙, 사인법칙 증명
삼각형 세 각의 크기에 대한 사인과 대변의 길이, 외접원의 반지름 사이의 관계를 정리해놓은 걸 사인법칙이라고 해요.
아래 그림에서 △ABC의 세 각을 A, B, C라고 하고 그 대변의 길이를 a, b, c라고 하죠. 외접원의 길이를 R이라고 하면 다음과 같은 관계가 성립해요.
△ABC의 외접원의 반지름을 R, 각의 대응변의 길이를 a, b, c라고 할 때
어떻게 이런 성질이 생기는지 증명해보죠. 일단 하나의 각에 대해서만 증명하면 다른 각에 대한 건 똑같은 방법으로 증명할 수 있어요.
사인 법칙 증명 - 예각일 때
∠A가 예각일 때에요.
점 B에서 외접원의 중심 O를 지나는 BA'를 그었어요. 는 원의 지름이에요.
중3 때 공부했던 원주각의 성질에 의하면 한 원에서 한 호의 원주각의 크기는 같아요. 호 BC의 원주각이므로 ∠A = ∠A'가 돼요. 또, 지름의 원주각은 90°니까 ∠A'CB = 90°죠.
sinA = sinA' = →
사인 법칙 증명 - 직각일 때
∠A = 90일 때는 쉽죠.
sinA = sin90° = 1이고, ∠A = 90°이면 대변 는 원의 지름이므로 2R이에요.
사인 법칙 증명 - 둔각일 때
여기도 예각일 때와 마찬가지로 점 B에서 외접원의 중심 O를 지나는 를 그어요. □ABA'C는 원에 내접해요.
원에 내접하는 사각형의 성질, 내대각에 따르면 원에 내접하는 사각형의 한 쌍의 대각의 합은 180°예요. A + A' = 180°이므로 A = 180° - A'
sinA = sin(180° - A') = sinA' = →
∠A가 예각, 직각, 둔각일 때 모두 이 성립해요. 같은 방법으로 ∠B, ∠C일 때도 증명할 수 있어요.
사인법칙의 사용
사인법칙은 삼각형의 세 각에서 각의 사인값과 길이의 비가 모두 같다는 거예요. 이를 이용해서 각의 크기와 변의 길이를 구할 수 있어요.
사인법칙의 사용
한 변의 길이와 양 끝각의 크기를 알 때
두 변의 길이와 그 끼인각이 아닌 각의 크기를 알 때
두 번째 조건이 약간 특이하죠? 끼인각을 알려주는 게 아니라 끼인각이 아닌 각이 크기를 알려줄 때에요. 잘 보세요.
삼각비를 이용해서 일반 삼각형 변의 길이를 구할 때는 수선을 그어서 내려서 매우 복잡하게 구했잖아요. 이제부터는 그렇게 하지 않아도 삼각형 변의 길이와 각의 크기를 구할 수 있어요.
다음을 구하여라.
(1) △ABC에서 A = 30°, B = 60°, c = 3cm일 때, a, b, C를 구하여라.
(2) △ABC에서 a = 3cm, b = 3cm, B = 60°일 때, A, C, c를 구하여라.
(1)번은 한 변의 길이와 양 끝각의 크기를 알려줬어요. C = 180° - (30° + 60°) = 90°
사인법칙 공식에 맞게 넣어보죠.
(2)번은 두 변의 길이와 그 끼인각이 아닌 각의 크기를 알려줬어요. 사인법칙 공식에 맞게 넣어보죠.
A = 60° or A = 120°인데 A = 120°이면 △ABC는 삼각형이 아니죠? 따라서 A = 60°에요.
A = B = 60°이므로 C = 60°가 되겠네요.
사실 세 각의 크기가 60°로 모두 같으니까 정삼각형으로 c = 3cm라는 걸 알 수 있어요. 위의 과정을 굳이 해볼 필요는 없겠네요.
A = 60°, C = 60°, c = 3cm
함께 보면 좋은 글
삼각함수 각의 변환 총정리
삼각함수 그래프 그리는 법 - sin 그래프, 주기함수
삼각함수의 그래프 - cos 그래프
삼각함수의 그래프 - tan 그래프
삼각방정식, 삼각방정식 푸는 방법
삼각부등식, 삼각부등식 푸는 법
[중등수학/중3 수학] - 원주각과 중심각의 크기, 원주각의 성질
[중등수학/중3 수학] - 원에 내접하는 사각형의 성질, 내대각