이등분선
현의 수직이등분선
1학년 때 여러 가지 도형의 종류와 정의에 대해서 배웠다면 2학년, 3학년 때는 각 도형의 성질을 배워요. 2학년 때는 여러 가지 사각형과 삼각형의 닮음에 대해서 배웠지요?
3학년 때는 원에 대해서 자세히 알아볼 거예요. 원에 대한 내용 중 첫 번째로 현에 관한 내용이에요. 현은 1학년 원과 부채꼴, 호, 현, 활꼴, 중심각에서 공부한 적이 있어요. 현의 정의에 대해서는 위 글을 참고하세요.
여기에서는 현의 수직이등분선의 성질에 대해서 알아보고, 그 성질을 증명해보죠.
현의 수직이등분선
현은 원 위의 두 점을 이은 직선을 말하죠? 원의 중심과 현 사이에는 한 가지 성질이 있어요. 이 한 가지 성질을 이렇게도 말하고 반대로도 말해요.
이 성질을 증명하기는 별로 어렵지 않아요. 그리고 나오는 문제들도 매우 쉽고요. 짧게 설명하고 넘어갈게요.
원의 중심에서 현에 내린 수선은 현을 수직이등분한다.
원의 중심 O에서 에 수선을 내리면
는
를 수직이등분해요. 수선이니까 당연히 수직이겠죠. 이등분하는지만 증명해보면 되겠네요.
점 O에서 점 A와 점 B로 선을 그어보죠.
△OAH와 △OBH가 생겨요. 두 삼각형에서
∠OHA = ∠OHB = 90° (는 수선)
는 공통
= 반지름 r
따라서 두 삼각형은 RHS 합동이에요. 대응변의 길이가 같으므로 이죠. (증명 끝.)
다음 그림을 보고 의 길이를 구하여라.
△OAH가 직각삼각형이에요. 피타고라스의 정리를 이용하면 = 4cm고요.
= 2
= 8cm입니다.
현의 수직이등분선은 원의 중심을 지난다.
명제의 결론인 원의 중심을 지나는지를 증명하기는 까다로워요. 그래서 다른 방법으로 증명하지요. 현의 중점과 원의 중심을 연결해요. 그리고 이 선이 현에 수직인지를 증명하는 거죠.
의 중점을 H라고 하고 원의 중심 O와 점 H을 연결해요.
와
가 수직인지를 증명해보죠.
점 O에서 점 A와 점 B로 선을 그어요.
△OAH와 △OBH에서
(점 H는
의 중점)
는 공통
= 반지름 r
따라서 두 삼각형은 SSS 합동이에요. 대응각의 크기가 같으므로 ∠OHA = ∠OHB이죠. ∠OHA + ∠OHB = 180°(평각)이므로 ∠OHA = ∠OHB = 90°에요. (증명 끝.)
함께 보면 좋은 글
[중등수학/중1 수학] - 원과 부채꼴, 호, 현, 활꼴, 중심각
[중등수학/중1 수학] - 도형의 합동, 삼각형의 합동조건
현의 길이
접선과 현이 이루는 각
각의 이등분선의 성질 - 직각삼각형의 합동조건 이용
각의 이등분선에 대해서 알죠? 1학년 때 각의 이등분선의 작도, 직각의 삼등분선의 작도에서 봤던 기억이 날 거예요.
이제는 그리는 것을 넘어서 각의 이등분선이 어떤 특징이 있는지 알아보죠. 그리는 것보다는 이게 더 쉬울 수 있어요.
각의 이등분선의 특징을 알아보려면 직각삼각형의 합동, 직각삼각형의 합동 조건을 알아야 해요.
직각삼각형의 합동조건
- RHA 합동: 빗변(H)의 길이와 한 예각(A)의 크기가 같은 두 직각삼각형은 합동
- RHS 합동: 빗변(H)의 길이와 다른 한 변(S)의 길이가 같은 두 직각삼각형은 합동
각의 이등분선
각의 이등분선은 이름 그대로 어떤 각을 똑같은 크기로 둘로 나누는 선이에요. 이등분선 위의 한 점과 각의 두 변 사이에 어떤 특징이 있을까요?
각의 이등분선 위의 한 점에서 그 각의 두 변에 이르는 거리는 같다.
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리에서 점과 직선 사이의 거리를 구하는 방법에 대해서 배웠어요. 점과 직선 사이의 거리를 구할 때는 점에서 직선에 수선을 내려서 만나는 점, 즉 수선의 발과의 거리를 구하죠.
각의 이등분선 위의 한 점에서 각 변에 수선의 발을 내리게 되면 각의 꼭짓점과 수선의 발, 이등분선위 점으로 이루어진 삼각형을 만들 수 있어요. 그런데 이게 직각삼각형이에요.
직각삼각형이 나오면 직각삼각형의 합동 조건을 이용한다는 걸 눈치채야 해요
아래 그림을 보세요.
∠AOB가 있어요. 이 각의 이등분선을 긋고 이등분선 위의 점 P에서 각의 변 OA와 변 OB에 수선을 내렸더니, △AOP와 △BOP가 생겨요.
일단 여기까지 해놓고, 위 성질을 증명해보죠.
가정: ∠AOP = ∠BOP(각의 이등분선), ∠OAP = ∠OBP = 90°(수선)
결론:
증명: (1) ∠AOP = ∠BOP (가정)
(2) ∠OAP = ∠OBP = 90° (가정)
(3) 는 공통
두 직각삼각형이 있는데, 빗변은 공통이고 한 예각의 크기가 같아요. RHA 합동이죠? △AOP ≡ △BOP
따라서 가 됩니다. (증명 끝.)
각의 두 변에서 같은 거리에 있는 점은 각의 이등분선 위에 있다.
이 성질은 위의 성질을 거꾸로 뒤집은 거예요. 마찬가지로 점과 직선 사이의 거리를 구해야 하니 수선의 발을 내려야 해요.
가정: , ∠OAP = ∠OBP = 90°(수선)
결론: ∠AOP = ∠BOP
증명: (1) (가정)
(2) ∠OAP = ∠OBP = 90° (가정)
(3) 는 공통
(1), (2), (3)에 의해서 빗변은 공통이고, 한 변의 길이가 같은 두 직각삼각형이기 때문에 RHS 합동이에요. △AOP ≡ △BOP
따라서 대응각인 ∠AOP = ∠BOP이 되죠. (증명 끝.)
직각삼각형의 합동 조건을 이용해서 각의 이등분선의 성질을 알아봤어요.
다음 그림에서 x를 구하여라.
△ABC가 직각삼각형인데, 그 안에 △ABD와 △AED, △CDE라는 직각삼각형 세 개 가 더 있네요.
△ABD에서 한 각은 직각, 다른 각은 60°니까 남은 ∠BAD는 30°겠죠?
△ABD와 △AED는 빗변 가 공통이고 한 변의 길이가 같은 (
) 직각삼각형으로 RHS 합동이에요. 따라서 ∠BAD와 ∠EAD는 같아요. ∠BAD = ∠EAD = 30°
따라서 ∠BAE = ∠BAD + ∠EAD = 60°죠.
큰 삼각형 △ABC에서 ∠A는 60°, ∠B는 90°니까 x = 30°이 되겠네요.
함께 보면 좋은 글
직각삼각형의 합동, 직각삼각형의 합동 조건
이등변삼각형의 성질, 이등변삼각형이 되는 조건
삼각형의 외심, 삼각형 외심의 성질
삼각형의 내심, 삼각형 내심의 성질