원점

숫자를 공부할 때 정수 다음에 유리수를 공부했어요. 식을 공부할 때는 다항식 다음에 유리식을 공부했고요. 함수를 공부할 때는 어떨까요? 다항함수를 공부한 다음에 유리함수를 공부해요. 다항함수라는 용어는 들어본 적이 없지만 다항함수를 모르는 건 아니에요. 이제까지 우리가 다뤄왔던 함수가 바로 다항함수니까요.

이 글에서는 유리함수의 뜻과 종류에 대해서 공부할 거예요. 분수함수, 점근선, 직각쌍곡선 등 새로운 용어들이 몇 개 나옵니다.

라는 함수의 그래프의 특징에 대해서도 공부할 거고요.

유리함수

유리식의 꼴로 생긴 식을 말해요. 그럼 유리함수는 뭘까요? 간단히 말하면꼴로 생긴 함수를 말해요. y = f(x)에서 f(x)가 x에 대한 유리식인 함수를 유리함수라고 합니다.

유리식에서 분모가 상수인 식을 다항식이라고 하고, 분모가 상수가 아니면 분수식이라고 했어요. 마찬가지로 함수 y =  f(x)에서 f(x)의 분모가 상수이면 즉, f(x)가 x에 대한 다항식이면 함수 y = f(x)를 다항함수라고 해요. 함수 y = f(x)에서 f(x)의 분모가 다항식이면 즉, f(x)가 x에 대한 분수식이면 함수 y = f(x)를 분수함수라고 하지요.

이제까지 공부했던 함수가 바로 다항함수예요.

유리함수의 분류 1

일반적으로 특별한 언급이 없으면 다항함수에서는 정의역과 공역이 실수 전체의 집합이에요. 하지만 분수에서 분모는 0이 될 수 없으므로 분수함수의 정의역은 분모 ≠ 0인 실수 전체가 됩니다.

분수함수 의 그래프

의 그래프는 중학교 1학년 때 정비례와 반비례에서 그려봤어요. 조금 더 자세히 알아보죠.

의 그래프를 그려볼까요? 일단 순서쌍으로 나타내보죠.

x -3 -2 -1 0 1 2 3
y - - -1 X 1

순서쌍으로 그래프를 그려보면 다음처럼 돼요.

y = k/x (k > 0)의 그래프

분자 k = 1로 양수죠? k가 양수면 x, y의 부호가 같으니까 그래프는 제 1, 3 사분면에 그려집니다.

두 개의 곡선 모양의 그래프라서 이 곡선을 쌍곡선이라고 하는데, 쌍곡선은 원점에 대하여 대칭이에요.

원점에서 멀어질수록 그래프가 x축과 y축에 점점 가까워지죠? 그래프가 점점 가까워지는 직선이라는 뜻으로 점근선이라고 하는데, 여기서는 x축, y축이 점근선이에요. x축과 y축처럼 점근선이 서로 직각인 쌍곡선을 직각쌍곡선이라고 해요.

k < 0이라면 쌍곡선은 제 2, 4 분면에 그려져요. 다른 특징은 같고요.

y = k/x (k < 0)의 그래프

만약에 의 그래프를 그려보면 어떻게 될까요? 분자의 k의 절댓값이 커질수록 그래프는 원점에서 멀어져요.

분수함수  그래프의 특징
정의역과 치역은 0을 제외한 실수 전체 집합
k > 0이면 제 1, 3 사분면, k < 0이면 제 2, 4 사분면
원점에 대하여 대칭
x축, y축을 점근선으로 하는 직각쌍곡선
|k|가 커질수록 원점에서 멀어진다.

함께 보면 좋은 글

함수, 함수의 정의, 대응
함수의 그래프
합성함수, 함성함수란
역함수, 역함수 구하는 법
이차함수, 이차함수 총정리
유리식, 분수식, 유리식의 사칙연산
[중등수학/중1 수학] - 정비례와 반비례 - 함수의 관계식

정리해볼까요

유리함수: 함수 y = f(x)에서 f(x)가 x에 대한 유리식

  • 다항함수: 함수 y = f(x)에서 f(x)가 x에 대한 다항식
  • 분수함수: 함수 y = f(x)에서 f(x)가 x에 대한 분수식

분수함수  그래프의 특징

  • 정의역과 치역은 0을 제외한 실수 전체 집합
  • k > 0이면 제 1, 3 사분면, k < 0이면 제 2, 4 사분면
  • 원점에 대하여 대칭
  • x축, y축을 점근선으로 하는 직각쌍곡선
  • |k|가 커질수록 원점에서 멀어진다.
 
그리드형

함수와 좌표평면에 대해서 알아봤어요. 이제 이 둘을 결합해보죠. 그게 바로 함수의 그래프에요.

함수별로 그래프를 그리는 방법과 특징이 달라요. 공통점과 차이점을 잘 이해하고 있어야 해요.

함수는 식으로 나타낼 수도 있고, 그래프로 나타낼 수도 있어요. 함수를 보고, 함수의 그래프를 그릴 수도 있어야 하고, 반대로 함수 그래프를 보고 함수식을 찾을 수도 있어야 해요.

이 글에서는 함수의 그래프가 뭔지, 함수 그래프는 어떻게 그리는 지, 함수별로 그래프는 어떻게 다른지를 비교해볼 거예요.

함수의 그래프

y = 2x라는 함수가 있을 때, (-3, -6), (-2, -4), (-1, -2), (0, 0), (1, 2), (2, 4), (3, 6) 같은 순서쌍을 만들 수 있어요. 이 순서쌍들을 좌표평면에 나타내 보면 아래 그림처럼 되지요.

함수의 그래프 - 순서쌍을 좌표평면에 나타내기

그런데 x가 정수일 때 뿐 아니라 유리수일 때도 순서쌍을 만들 수 있겠죠? 0.1, 0.11, 0.111, …, 0.2, 0.22, … 처럼요. 그러면 이런 x에 대응하는 y값들을 구해서 순서쌍을 만들고, 이 순서쌍을 좌표평면에 나타내면 점들이 모여서 선이 돼요. 이렇게 함수에서 만들 수 있는 순서쌍들을 좌표평면에 나타낸 것을 함수의 그래프라고 해요.

y = 2x의 함수에서 순서쌍을 만들어서 좌표평면에 나타내면 아래와 같은 그래프를 그릴 수 있어요.

함수의 그래프 - y = ax (a > 0)

x, y의 범위를 좁게 해서 함수의 그래프를 그려서 그렇지 실제로는 왼쪽 아래와 오른쪽 위로 계속 이어지는 그래프에요.

함수 y = ax (a ≠ 0)의 그래프

위에서 그렸던 y = 2x의 그래프가 바로 a = 2인 y = ax 형태의 그래프죠? 어떤 특징이 있나요? 일단 원점 O(0, 0)를 지나고 오른쪽 위로 향하는 직선이에요. 제1사분면과 제3사분면을 지나는 그래프네요.

이번에는 y = -2x의 그래프를 그려보죠. 마찬가지로 순서쌍을 만들고 그 순서쌍을 좌표평면에 찍어서 나타내요.

함수의 그래프 - y = ax (a < 0)

y = -2x의 그래프도 원점 O (0, 0)를 지나요. 그리고 오른쪽 아래로 향하는 직선이고, 제2사분면과 제4사분면을 지나네요.

함수 y = ax (a ≠0)의 그래프에서 x = 0이면 y = 0이니까 원점 O(0, 0)를 지나요. 그리고 a > 0이면 x와 y의 부호가 같죠? 그래서 제1사분면과 제3사분면을 지나는 거예요. 반대로 a < 0이면 x의 부호와 y의 부호가 반대라서 제2사분면과 제4사분면을 지나는 거죠.

함수의 그래프 - y = ax (a ≠ 0)

y = ax (a ≠ 0)의 그래프
a > 0 a < 0
원점 (0, 0)을 지나는 직선
오른쪽 위로 향하는 직선 오른쪽 아래로 향하는 직선
제1사분면, 제3사분면 제2사분면, 제4사분면

함수 y = ax (a ≠ 0) 그래프 그리는 법

함수 y = ax (a ≠ 0)의 그래프는 원점을 지나는 직선이에요. 직선은 점 두 개만 있으면 그릴 수 있어요. y = ax의 그래프는 원점 O를 지나니까 원점이 아닌 다른 점의 좌표 하나만 더 알면 그릴 수 있다는 얘기예요.

y = 2x의 그래프를 예로 들면, 원점 (0, 0)과 (1, 2) 두 점을 연결해서 그리면 돼요. 굳이 x = 2, 3, 4, …  이런 점들의 순서쌍을 구할 필요가 없다는 뜻이죠. y = -2x도 원점 (0, 0)과 (1, -2) 두 점을 연결해서 그래프를 그릴 수 있어요.

함수 y = a/x (a ≠ 0)의 그래프

이번에는 y = a/x(a ≠ 0)의 함수의 그래프는 어떤 특징이 있는지 알아볼까요?

y = y = a/x 그래프를 그려보죠.

먼저 순서쌍을 찾아보면 …, (-12, -1), (-6, -2), (-4, -3), (-3, -4), (-2, -6), (-1, -12), (1, 12), (2, 6), (3, 4), (4, 3), (6, 2), (12, 1), …이 있네요. 물론 중간마다 x = 0.1, 0.11, …, 0.2, 0.22, … 같은 순서쌍도 찾을 수 있겠죠. 이런 점들을 좌표평면에 표시하면 아래처럼 돼요. 직선이 아니라 x축, y축에 가까워지면서 한없이 뻗어 나가는 곡선이 2개가 그려졌어요. 이 곡선은 제1사분면과 제3사분면을 지나네요.

함수의 그래프 - y = a/x (a > 0)

y = -y = a/x의 그래프도 그려보죠.

먼저 순서쌍을 찾으면 …, (-12, 1), (-6, 2), (-4, 3), (-3, 4), (-2, 6), (-1, 12), (1, -12), (2, -6), (3, -4), (4, -3), (6, -2), (12, -1), …이 있네요. 마찬가지로 정수가 아니라 유리수 순서쌍도 무수히 많을 거고요. 좌표평면에 점을 찍어봤더니 아래 그림처럼 그래프가 그려졌어요. x축, y축에 가까워지면서 한없이 뻗어 나가는 2개의 곡선인데, 곡선은 제2사분면과 제4사분면을 지나가요.

함수의 그래프 - y = a/x (a < 0)

함수 y = a/x (a ≠ 0)에서 분수의 분모인 x는 0이 될 수 없으니까 y축과 만나지 않아요. 또 a ≠ 0이므로 y ≠ 0이어서 x축과도 만나지 않죠. 대신 x축, y축에 한없이 가까워지지만 할 뿐이에요. x ≠ 0, y ≠ 0이니까 원점도 지나지 않죠. 모양도 직선이 아니라 곡선이에요. 그리고 a > 0이면 x와 y의 부호가 같으니까 제1사분면과 제3사분면을 지나요. 반대로 a < 0이면 x의 부호와 y의 부호가 반대라서 제2사분면과 제4사분면을 지나는 거죠.

함수의 그래프 - y = a/x (a ≠ 0)

y = a/x (a ≠ 0)의 그래프
a > 0 a < 0
x축, y축에 한없이 가까워지는 한 쌍의 곡선
제1사분면, 제3사분면 제2사분면, 제4사분면

함수 y = a/x(a ≠ 0)의 그래프 그리기

y = a/x는 직선이 아니라 곡선이라서 가능하면 많은 순서쌍을 찾아야 해요. 그래서 그 순서쌍을 좌표평면에 나타내고, 곡선으로 연결하는 거죠. 기본적인 형태는 같아요. 지나는 점만 다르다고 생각하면 돼요.

몇 번 연습해보면 그릴 수 있어요.

다음에 그려진 함수의 그래프를 보고, 함수를 구하여라.
함수의 그래프 예제

(1)은 제2사분면과 제3사분면을 지나는 직선이에요. y = ax의 그래프인데, a < 0인 그래프죠. 원점 O와 (1, -3)을 지나요. y = ax에 x = 1, y = -3을 대입하면 a를 구할 수 있어요.
y = ax
-3 = a × 1
a = -3

y = -3x의 그래프네요.

(2)는 제1사분면과 제3사분면을 지나는 곡선이에요. y = a/x의 그래프라는 얘기죠. 이 그래프는 (1, 5)를 지나네요. x = 1, y = 5를 대입해보죠.

y = a/x

의 그래프군요.

함께 보면 좋은 글

함수의 뜻과 함숫값, 함수의 정의
정비례와 반비례 - 함수의 관계식
순서쌍과 좌표, 좌표평면
함수의 활용

정리해볼까요

함수의 그래프

  • y = ax (a ≠ 0)의 그래프
    • 원점 (0, 0)을 지나는 직선
    • a > 0이면 제1사분면, 제3사분면을 지나고 오른쪽 위로 향함.
    • a < 0이면 제2사분면, 제4사분면을 지나고 오른쪽 아래로 향함.
  • y = a/x (a ≠ 0)의 그래프
    • x축, y축에 한없이 가까워지는 매끄러운 한 쌍의 곡선
    • a > 0이면 제1사분면, 제3사분면
    • a < 0이면 제2사분면, 제4사분면
 
그리드형

수직선을 공부했었죠? 이 글의 내용은 수직선을 확장한 내용이에요. 그런데 그게 조금 많이 어렵습니다. 새로운 용어들과 그림이 많이 나오거든요.

어느 하나 중요하지 않은 용어가 없어요. 다음에 공부할 그래프는 물론, 2, 3학년 때도 계속 때도 사용하는 용어들이에요. 주의하고, 집중해서 잘 읽어보세요.

새로운 용어와 그림을 함께 기억하세요. 용어 따로 그림 따로가 아니에요. 문제를 읽고 그림으로 표현할 줄 알아야 하고, 그림을 보고 내용을 파악하려면 당연한 거겠죠?

순서쌍과 좌표

수직선이 뭔지 알고 있죠? 아래 그림처럼 수직선의 2라는 숫자에 점 A가 있다고 해보죠.

수직선과 좌표

수직선의 2위에 점 A가 있다는 건 반대로 점 A에 2가 대응한다고 얘기할 수 있어요.

수직선 위의 한 점에 대응하는 수를 좌표라 하고 기호로는 P(a)라고 표시해요. 점 P가 수직선 위의 a라는 숫자에 있다는 뜻이에요. 만약에 점 A가 수직선의 2위에 있다고 한다면 A(2)라고 표시하고 A의 좌표는 2라고 하는 거예요.

좌표: 수직선 위의 한 점에 대응하는 수
P(a): 점 P의 좌표가 a

순서쌍은 한 쌍의 숫자를 순서대로 쓰는 걸 말해요. 한 쌍을 표시할 때는 괄호 안에 쓰고, 콤마(,)로 구분해요. 1, 2로 된 순서쌍은 (1, 2)로 쓰는 거예요.

순서쌍에서는 순서가 중요해요. (1, 2)와 (2, 1)은 다른 거예요.

좌표평면

수직선은 가로로 된 선이 하나만 있었어요. 그런데 가로로 된 수직선에 수직인 세로선(수직선)을 그어요. 이때 가로인 수직선을 x축, 세로인 수직선은 y축, x축과 y축을 합쳐서 좌표축이라고 하고 좌표축이 그려진 평면을 좌표평면이라고 해요. 또 두 수직선이 만나는 점을 원점 O라고 하고요.

좌표평면, x축, y축, 좌표축, 원점

수직선에는 0을 기준으로 오른쪽이 양수, 왼쪽이 음수였죠? 좌표평면에서는 x축은 점 O의 오른쪽이 양수, 왼쪽이 음수예요. y축은 점 O보다 위에 있으면 양수, 아래에 있으면 음수예요.

모눈종이나 바둑판을 생각해보세요.

수직선에는 점 P의 좌표를 P(a)라고 표시하는데, 좌표평면에서는 수직선이 2개니까 사용하는 숫자도 2개예요. 그래서 P(a, b)라고 표시해요. a는 점 P에서 x축에 수선을 내려서 만나는 점의 숫자로 x좌표라고 하고, b는 점 P에서 y축에 수선을 그어서 만나는 점의 숫자로 y좌표라고 해요.

좌표평면과 좌표

좌표평면은 좌표축에 의해서 네 부분으로 나누어져요. 네 부분으로 나누어지니까 사분면이라고 하는데, 오른쪽 위에 있는 영역부터 반시계방향으로 제1사분면, 제2사분면, 제3사분면, 제4사분면이라고 불러요. 좌표축은 사분면을 나누는 기준일 뿐, 사분면에 포함되지는 않아요.

좌표평면과 사분면

그림에서 사분면의 이름 옆에 괄호 안에 (+, +), (-, -) 이 표시는 사분면 위 점들 좌표의 부호예요. 제1사분면에 있는 점의 x좌표와 y좌표는 둘 다 양수니까 (+, +)로 표시한 거고, 제2사분면에 있는 점의 x좌표는 음수, y좌표는 양수라서 (-, +)로 표시한 겁니다.

어떤 점이 제1사분면에 있을 때, '제1사분면 위의 점이다' 이런 식으로 표현해요.

x축: 가로로 그어진 수직선
y축: 세로로 그어진 수직선
좌표축: x축, y축
좌표평면: x축과 y축이 그려진 평면
원점: x축과 y축이 만나는 점. O
P(x, y): 점 P의 좌표. x좌표, y좌표 순
사분면: 좌표평면이 좌표축으로 나누어진 네 영역, 제1사분면(+, +), 제2사분면(-, +), 제3사분면(-, -), 제4사분면(+, -)

다음 점들 중에서 제4사분면 위의 점은 무엇인가?
(1) A(2, 3)         (2) B(3, -2)
(3) C(-2, -3)      (4) D(-2, 3)

사분면 위의 점들의 부호
제1사분면 제2사분면 제3사분면 제4사분면
x좌표의 부호 + - - +
y좌표의 부호 + + - -

(1) A(2, 3)에서 x, y좌표의 부호가 둘 다 양수이므로 제1사분면 위의 점이네요.

(2) B(3, -2)에서 x좌표는 (+), y좌표는 (-)이므로 제4사분면 위의 점이네요.

(3) C(-2, -3)에서 x, y좌표 부호가 둘 다 음수이므로 제3사분면 위의 점이고요.

(4) D(-2, 3)에서 x좌표는 (-), y좌표는 (+)이므로 제2사분면 위의 점이네요.

따라서 제4분면 위의 점은 B입니다.

함께 보면 좋은 글

함수의 뜻과 함숫값, 함수의 정의
정비례와 반비례 - 함수의 관계식
함수 그래프, 함수의 그래프 특징 비교
함수의 활용

정리해볼까요

좌표

  • 좌표: 수직선 위의 한 점에 대응하는 수
  • P(a): 점 P의 좌표가 a

좌표평면

  • x축: 가로로 그어진 수직선
  • y축: 세로로 그어진 수직선
  • 좌표축: x축, y축
  • 좌표평면: x축과 y축이 그려진 평면
  • 원점: x축과 y축이 만나는 점. O
  • P(x, y): 점 P의 좌표. x좌표, y좌표 순
  • 사분면: 좌표평면이 좌표축으로 나누어진 네 영역
    제1사분면(+, +), 제2사분면(-, +), 제3사분면(-, -), 제4사분면(+, -)
그래프
 
그리드형

+ 최근글