외각의 크기

다각형에서 내각과 외각의 용어에 대해 이해하고 있죠?

삼각형 내각의 합과 외각의 크기, 외각의 합에서 공부한 내용을 정리해보죠.

내각의 크기의 합 = 180°
외각의 크기 = 이웃하지 않은 두 내각의 크기의 합
외각의 크기의 합 = 360°

그럼 이번에는 삼각형이 아니라 사각형, 오각형 등의 내각의 크기의 합과 외각의 크기, 외각의 크기의 합을 알아볼까요.

그리고 일반적인 다각형, 그러니까 n각형에서의 내각과 외각의 성질에 대해서 알아보죠.

다각형 내각의 크기의 합

다각형의 내각의 크기의 합은 아주 간단하게 구할 수 있어요.

다각형 내각의 크기의 합

위 그림은 사각형, 오각형, 육각형 그림인데요. 한 점에서 대각선을 그어봤어요. 삼각형이 몇 개씩 생겼나요?

사각형은 두 개, 오각형은 세 개, 육각형은 네 개의 삼각형이 있어요.

대각선의 개수구하기, 대각선의 개수 공식에서 한 점에서 그을 수 있는 대각선의 개수는 (n - 3)이라는 걸 공부했어요. 삼각형의 개수는 대각선의 수보다 하나 더 많으니까 (n - 3) + 1 = (n - 2)개예요.

내각의 크기를 어떻게 구하는지 대충 감이 오죠?

삼각형 내각의 크기의 합은 180°에요. 다각형의 한 점에서 대각선을 그어서 삼각형이 몇 개 들어있는지 세어본 다음에 삼각형 개수에 180°를 곱하면 다각형 내각의 크기의 합을 알 수 있어요.

다각형 내각의 크기의 합
다각형 사각형 오각형 육각형 n각형
한 점에서 그을 수 있는 대각선의 수 (개) 1 2 3 n - 3

삼각형의 수 (개)

2 3 4 n - 2
내각의 크기의 합 (°) 180° × 2
= 360°
180° × 3
= 540°
180° × 4
= 720°
180° × (n - 2)

삼각형 내각의 크기의 합을 구하면 n = 3을 대입해서 180° × (3 - 2) = 180°로 나오는군요.

그냥 다각형이라면 한 내각의 크기를 구할 수는 없겠지만 정다각형은 한 내각의 크기를 구할 수 있겠죠? 정다각형은 변의 길이와 내각의 크기가 모두 같은 다각형이잖아요. 내각의 크기가 모두 같으니까 크기의 합을 나눠주면 구할 수 있겠지요.

정n각형 한 내각의 크기 = {정n각형 내각의 크기의 합} ÷ n
                                   = {180° × (n - 2)} ÷ n

n각형 내각의 크기의 합 = 180° × (n - 2)
정n각형 한 내각의 크기 = 정n각형 한 내각의 크기

다각형의 외각의 크기

다각형의 외각의 크기의 합은 그림이 아니라 식으로 설명해 볼게요. 잘 따라오세요.

다각형, 내각, 외각, 정다각형에서 공부했던 내각과 외각의 성질에 대해서 기억하고 있죠? 다각형에서 한 내각의 크기와 이웃한 외각의 크기의 합은 항상 180°라고 했어요.

다각형이 n각형이라면 각이 n개 있겠죠? 그러니까 전체 내각과 외각의 크기의 합은 180° × n이 될 거예요. 이걸 식으로 써보죠.

(내각의 크기의 합) + (외각의 크기의 합) = 180° × n
(외각의 크기의 합) = 180° × n - (내각의 크기의 합)                ←   (내각의 크기의 합)을 이항
(외각의 크기의 합) = 180° × n - {180° × (n-2)}                  ←   n각형의 내각의 크기의 합 = 180° × (n-2)
(외각의 크기의 합) = 180° × n - (180° × n - 180° × 2)        ←   분배법칙
(외각의 크기의 합) = 180° × n - (180° × n) + 360°
(외각의 크기의 합) = 360°

약간 복잡하긴 하지만 위 계산 과정을 거치면 다각형의 외각의 크기의 합은 360°라는 결과가 나와요.

삼각형, 사각형, 오각형과 관계없이 다각형의 외각의 크기의 합은 모두 360°로 일정해요.

그럼 정n각형의 한 외각의 크기는 얼마일까요? 전체가 360°니까 n으로 나눠주면 되겠네요.

n각형 외각의 크기의 합 = 360° 
정n각형 한 외각의 크기 = 정다각형 한 외각의 크기 = 360°/n

다음 다각형의 내각의 크기의 합과 한 내각의 크기, 외각의 크기의 합과 한 외각의 크기를 차례로 구하여라.
(1) 정오각형
(2) 정십각형
(3) 정십오각형

n각형의 내각의 크기의 합과 외각의 크기의 합은 정다각형이 아니어도 구할 수 있지만, 한 내각의 크기, 한 외각의 크기는 정n각형에서만 구할 수 있어요. 문제에서는 정n각형이네요. 표로 한 번 해볼까요?

다각형 n각형 정오각형 정십각형 정십오각형
내각 크기의 합 180° × (n - 2) 180° × (5-2)
= 540°
180° × (10-2)
= 1440°
180° × (15-2)
= 2340°
한 내각의 크기 {180° × (n - 2)} ÷ n 540° ÷ 5
= 108°
1440° ÷ 10
= 144°
2340° ÷ 15
= 156°
외각 크기의 합 360° 360° 360° 360°
한 외각의 크기 360° ÷ n 360° ÷ 5
= 72°
360° ÷ 10
= 36°
360° ÷ 15
= 24°

함께 보면 좋은 글

다각형, 내각, 외각, 정다각형
대각선의 개수구하기, 대각선의 개수 공식
삼각형 내각의 합과 외각의 크기, 외각의 합

정리해볼까요

다각형의 내각의 크기의 합

  • n각형의 내각의 크기의 합 = 180° × (n - 2)
  • 정n각형의 한 내각의 크기 = {180° × (n - 2)} ÷ n

다각형의 외각의 크기의 합

  • n각형의 외각의 크기의 합 = 360°
  • 정n각형의 한 외각의 크기 = 360° ÷ n
<<    중1 수학 목차    >>
 
그리드형

다각형, 내각, 외각, 정다각형에서 내각외각이 무엇인지 알아봤어요. 내각은 이웃하는 두 변으로 이루어진 각으로 다각형의 안쪽에 있고, 외각은 한 변의 연장선과 이웃한 변이 이루는 각으로 다각형의 바깥쪽에 있어요.

항상 하는 거지만 기본적인 도형의 용어에 대해서 공부하고, 그다음은 삼각형을 공부해요. 이 삼각형의 내용을 확장해서 사각형, 오각형……… 등의 다각형으로 넓히는 거고요.

이 글에서는 내각과 외각 중에서 삼각형의 내각의 합과 외각의 크기, 외각의 크기의 합을 알아볼 거예요. 공식 아닌 공식이니까 꼭 외워두세요.

삼각형의 내각의 합

삼각형 내각의 크기의 합은 180°

△ABC가 있어요. 점 A를 지나고 변BC에 평행한 직선 DE를 그었어요.

삼각형 내각의 합

그랬더니 ∠DAB와 ∠EAC가 생겼죠?

평행선의 성질, 평행선에서 동위각과 엇각에서 평행선과 한 직선이 만나서 생기는 동위각의 크기는 같다고 했어요. 물론 엇각도 서로 크기가 같고요.

∠DAB는 ∠B와 엇각이에요. 그리고 ∠EAC는 ∠C와 엇각이지요. ∠DAB = ∠B, ∠EAC = ∠C예요.

△ABC의 내각의 크기의 합을 구해보죠.

∠A + ∠B + ∠C = ∠A + ∠DAB + ∠EAC = ∠DAE = 180° (평각)

∠A + ∠B + ∠C = 180°

삼각형 세 내각의 크기의 합 = 180°

삼각형의 모양이 어떤 것이든 상관없어요. 직삼각형이든 정삼각형이든 그냥 삼각형이든 모두 내각의 크기의 합은 180°에요.

삼각형 외각의 크기, 외각의 합

삼각형의 한 외각의 크기는 이웃하지 않은 두 내각의 크기의 합과 같다.

이번에는 조금 복잡하니까 그림을 잘 보세요.

삼각형 외각의 크기, 삼각형 외각의 합

△ABC가 있어요. 우선 변 AB와 변 BC의 연장선을 그어요. 그리고 변 AB와 평행하고 점 C를 지나는 직선을 그렸어요. 직선 CE라고 할게요.

마찬가지로 변 AB의 연장선과 직선 CE는 평행선이니까 동위각과 엇각의 크기가 같겠죠?

∠ACE는 ∠A와 엇각이고요, ∠ECD는 ∠B와 동위각이에요. ∠ACE = ∠A, ∠ECD = ∠B

점 C의 외각의 크기는 ∠ACE + ∠ECD = ∠A + ∠B가 되지요. 점 C의 외각의 크기는 삼각형의 세 내각 중 ∠C를 뺀 나머지 두 내각의 합인 걸 알 수 있어요.

한 꼭짓점에서 외각의 크기는 이웃하지 않은 두 내각의 크기의 합과 같다고 할 수 있어요.

여기에 다각형, 내각, 외각, 정다각형에서 공부했던 내용을 하나 더 붙여서 (외각의 크기) = 180° - (내각의 크기)라는 것까지 알아두세요.

삼각형의 외각의 크기의 합은 360°

삼각형의 한 외각의 크기를 알아봤으니 이제 외각을 모두 더하면 얼마가 되는지 알아볼까요? 한 외각의 크기는 이웃하지 않은 두 내각의 크기의 합이니까 아래처럼 쓸 수 있어요.

∠A의 외각의 크기 = ∠B + ∠C
∠B의 외각의 크기 = ∠A + ∠C
∠C의 외각의 크기 = ∠A + ∠B

외각의 크기의 합은 위 세 개를 다 더하면 되겠죠?

외각의 크기 합 = ∠B + ∠C + ∠A + ∠C + ∠A + ∠B
                    = ∠A + ∠B + ∠C + ∠A + ∠B + ∠C
                    = 180° × 2           (∵ ∠A + ∠B + ∠C = 180°, 삼각형 내각의 합)
                    = 360°

외각의 크기의 합은 360°인 걸 알 수 있어요.

삼각형 한 외각의 크기 = 이웃하지 않은 두 내각의 크기의 합
삼각형 세 외각의 크기의 합 = 360°

다음 그림을 보고 x의 크기를 구하여라.
삼각형 내각의 크기의 합, 외각의 크기 예제

(1)은 삼각형의 내각의 크기가 적혀있는데, x로 표현되어 있어요. 삼각형 내각의 크기의 합은 180°이므로 세 각을 모두 더하면 180°가 되어야겠죠?
x + x + 20° + 2x = 180°
4x = 160°
x = 40°
x는 40°네요.

(2)에서는 x가 내각에도 표시되어 있지만 외각에도 표시되어있어요. 내각이 하나는 x이고 다른 하나는 직각표시가 있으니 90°네요. 외각이 하나 표시되어 있으니까 한 외각의 크기는 이웃하지 않은 두 내각의 합과 같은 성질을 이용해보죠.
x + 90° = 3x
2x = 90°
x = 45°
x는 45°네요. 직각이등변삼각형이었군요.

함께 보면 좋은 글

평행선의 성질, 평행선에서 동위각과 엇각
다각형, 내각, 외각, 정다각형
다각형 내각의 크기의 합과 외각 크기의 합
대각선의 개수구하기, 대각선의 개수 공식

정리해볼까요

삼각형의 내각, 외각의 성질

  • 삼각형 세 내각의 크기의 합 = 180°
  • 삼각형 한 외각의 크기 = 이웃하지 않은 두 내각의 크기의 합
  • 삼각형 세 외각의 크기의 합 = 360°
 
그리드형

+ 최근글