외각
다각형 내각의 크기의 합과 외각 크기의 합
다각형에서 내각과 외각의 용어에 대해 이해하고 있죠?
삼각형 내각의 합과 외각의 크기, 외각의 합에서 공부한 내용을 정리해보죠.
내각의 크기의 합 = 180°
외각의 크기 = 이웃하지 않은 두 내각의 크기의 합
외각의 크기의 합 = 360°
그럼 이번에는 삼각형이 아니라 사각형, 오각형 등의 내각의 크기의 합과 외각의 크기, 외각의 크기의 합을 알아볼까요.
그리고 일반적인 다각형, 그러니까 n각형에서의 내각과 외각의 성질에 대해서 알아보죠.
다각형 내각의 크기의 합
다각형의 내각의 크기의 합은 아주 간단하게 구할 수 있어요.
위 그림은 사각형, 오각형, 육각형 그림인데요. 한 점에서 대각선을 그어봤어요. 삼각형이 몇 개씩 생겼나요?
사각형은 두 개, 오각형은 세 개, 육각형은 네 개의 삼각형이 있어요.
대각선의 개수구하기, 대각선의 개수 공식에서 한 점에서 그을 수 있는 대각선의 개수는 (n - 3)이라는 걸 공부했어요. 삼각형의 개수는 대각선의 수보다 하나 더 많으니까 (n - 3) + 1 = (n - 2)개예요.
내각의 크기를 어떻게 구하는지 대충 감이 오죠?
삼각형 내각의 크기의 합은 180°에요. 다각형의 한 점에서 대각선을 그어서 삼각형이 몇 개 들어있는지 세어본 다음에 삼각형 개수에 180°를 곱하면 다각형 내각의 크기의 합을 알 수 있어요.
다각형 | 사각형 | 오각형 | 육각형 | n각형 |
---|---|---|---|---|
한 점에서 그을 수 있는 대각선의 수 (개) | 1 | 2 | 3 | n - 3 |
삼각형의 수 (개) |
2 | 3 | 4 | n - 2 |
내각의 크기의 합 (°) | 180° × 2 = 360° |
180° × 3 = 540° |
180° × 4 = 720° |
180° × (n - 2) |
삼각형 내각의 크기의 합을 구하면 n = 3을 대입해서 180° × (3 - 2) = 180°로 나오는군요.
그냥 다각형이라면 한 내각의 크기를 구할 수는 없겠지만 정다각형은 한 내각의 크기를 구할 수 있겠죠? 정다각형은 변의 길이와 내각의 크기가 모두 같은 다각형이잖아요. 내각의 크기가 모두 같으니까 크기의 합을 나눠주면 구할 수 있겠지요.
정n각형 한 내각의 크기 = {정n각형 내각의 크기의 합} ÷ n
= {180° × (n - 2)} ÷ n
n각형 내각의 크기의 합 = 180° × (n - 2)
정n각형 한 내각의 크기 =
다각형의 외각의 크기
다각형의 외각의 크기의 합은 그림이 아니라 식으로 설명해 볼게요. 잘 따라오세요.
다각형, 내각, 외각, 정다각형에서 공부했던 내각과 외각의 성질에 대해서 기억하고 있죠? 다각형에서 한 내각의 크기와 이웃한 외각의 크기의 합은 항상 180°라고 했어요.
다각형이 n각형이라면 각이 n개 있겠죠? 그러니까 전체 내각과 외각의 크기의 합은 180° × n이 될 거예요. 이걸 식으로 써보죠.
(내각의 크기의 합) + (외각의 크기의 합) = 180° × n
(외각의 크기의 합) = 180° × n - (내각의 크기의 합) ← (내각의 크기의 합)을 이항
(외각의 크기의 합) = 180° × n - {180° × (n-2)} ← n각형의 내각의 크기의 합 = 180° × (n-2)
(외각의 크기의 합) = 180° × n - (180° × n - 180° × 2) ← 분배법칙
(외각의 크기의 합) = 180° × n - (180° × n) + 360°
(외각의 크기의 합) = 360°
약간 복잡하긴 하지만 위 계산 과정을 거치면 다각형의 외각의 크기의 합은 360°라는 결과가 나와요.
삼각형, 사각형, 오각형과 관계없이 다각형의 외각의 크기의 합은 모두 360°로 일정해요.
그럼 정n각형의 한 외각의 크기는 얼마일까요? 전체가 360°니까 n으로 나눠주면 되겠네요.
n각형 외각의 크기의 합 = 360°
정n각형 한 외각의 크기 =
다음 다각형의 내각의 크기의 합과 한 내각의 크기, 외각의 크기의 합과 한 외각의 크기를 차례로 구하여라.
(1) 정오각형
(2) 정십각형
(3) 정십오각형
n각형의 내각의 크기의 합과 외각의 크기의 합은 정다각형이 아니어도 구할 수 있지만, 한 내각의 크기, 한 외각의 크기는 정n각형에서만 구할 수 있어요. 문제에서는 정n각형이네요. 표로 한 번 해볼까요?
다각형 | n각형 | 정오각형 | 정십각형 | 정십오각형 |
---|---|---|---|---|
내각 크기의 합 | 180° × (n - 2) | 180° × (5-2) = 540° |
180° × (10-2) = 1440° |
180° × (15-2) = 2340° |
한 내각의 크기 | {180° × (n - 2)} ÷ n | 540° ÷ 5 = 108° |
1440° ÷ 10 = 144° |
2340° ÷ 15 = 156° |
외각 크기의 합 | 360° | 360° | 360° | 360° |
한 외각의 크기 | 360° ÷ n | 360° ÷ 5 = 72° |
360° ÷ 10 = 36° |
360° ÷ 15 = 24° |
함께 보면 좋은 글
다각형, 내각, 외각, 정다각형
대각선의 개수구하기, 대각선의 개수 공식
삼각형 내각의 합과 외각의 크기, 외각의 합
삼각형 내각의 합과 외각의 크기, 외각의 합
다각형, 내각, 외각, 정다각형에서 내각과 외각이 무엇인지 알아봤어요. 내각은 이웃하는 두 변으로 이루어진 각으로 다각형의 안쪽에 있고, 외각은 한 변의 연장선과 이웃한 변이 이루는 각으로 다각형의 바깥쪽에 있어요.
항상 하는 거지만 기본적인 도형의 용어에 대해서 공부하고, 그다음은 삼각형을 공부해요. 이 삼각형의 내용을 확장해서 사각형, 오각형……… 등의 다각형으로 넓히는 거고요.
이 글에서는 내각과 외각 중에서 삼각형의 내각의 합과 외각의 크기, 외각의 크기의 합을 알아볼 거예요. 공식 아닌 공식이니까 꼭 외워두세요.
삼각형의 내각의 합
삼각형 내각의 크기의 합은 180°
△ABC가 있어요. 점 A를 지나고 변BC에 평행한 직선 DE를 그었어요.
그랬더니 ∠DAB와 ∠EAC가 생겼죠?
평행선의 성질, 평행선에서 동위각과 엇각에서 평행선과 한 직선이 만나서 생기는 동위각의 크기는 같다고 했어요. 물론 엇각도 서로 크기가 같고요.
∠DAB는 ∠B와 엇각이에요. 그리고 ∠EAC는 ∠C와 엇각이지요. ∠DAB = ∠B, ∠EAC = ∠C예요.
△ABC의 내각의 크기의 합을 구해보죠.
∠A + ∠B + ∠C = ∠A + ∠DAB + ∠EAC = ∠DAE = 180° (평각)
∠A + ∠B + ∠C = 180°
삼각형 세 내각의 크기의 합 = 180°
삼각형의 모양이 어떤 것이든 상관없어요. 직삼각형이든 정삼각형이든 그냥 삼각형이든 모두 내각의 크기의 합은 180°에요.
삼각형 외각의 크기, 외각의 합
삼각형의 한 외각의 크기는 이웃하지 않은 두 내각의 크기의 합과 같다.
이번에는 조금 복잡하니까 그림을 잘 보세요.
△ABC가 있어요. 우선 변 AB와 변 BC의 연장선을 그어요. 그리고 변 AB와 평행하고 점 C를 지나는 직선을 그렸어요. 직선 CE라고 할게요.
마찬가지로 변 AB의 연장선과 직선 CE는 평행선이니까 동위각과 엇각의 크기가 같겠죠?
∠ACE는 ∠A와 엇각이고요, ∠ECD는 ∠B와 동위각이에요. ∠ACE = ∠A, ∠ECD = ∠B
점 C의 외각의 크기는 ∠ACE + ∠ECD = ∠A + ∠B가 되지요. 점 C의 외각의 크기는 삼각형의 세 내각 중 ∠C를 뺀 나머지 두 내각의 합인 걸 알 수 있어요.
한 꼭짓점에서 외각의 크기는 이웃하지 않은 두 내각의 크기의 합과 같다고 할 수 있어요.
여기에 다각형, 내각, 외각, 정다각형에서 공부했던 내용을 하나 더 붙여서 (외각의 크기) = 180° - (내각의 크기)라는 것까지 알아두세요.
삼각형의 외각의 크기의 합은 360°
삼각형의 한 외각의 크기를 알아봤으니 이제 외각을 모두 더하면 얼마가 되는지 알아볼까요? 한 외각의 크기는 이웃하지 않은 두 내각의 크기의 합이니까 아래처럼 쓸 수 있어요.
∠A의 외각의 크기 = ∠B + ∠C
∠B의 외각의 크기 = ∠A + ∠C
∠C의 외각의 크기 = ∠A + ∠B
외각의 크기의 합은 위 세 개를 다 더하면 되겠죠?
외각의 크기 합 = ∠B + ∠C + ∠A + ∠C + ∠A + ∠B
= ∠A + ∠B + ∠C + ∠A + ∠B + ∠C
= 180° × 2 (∵ ∠A + ∠B + ∠C = 180°, 삼각형 내각의 합)
= 360°
외각의 크기의 합은 360°인 걸 알 수 있어요.
삼각형 한 외각의 크기 = 이웃하지 않은 두 내각의 크기의 합
삼각형 세 외각의 크기의 합 = 360°
다음 그림을 보고 x의 크기를 구하여라.
(1)은 삼각형의 내각의 크기가 적혀있는데, x로 표현되어 있어요. 삼각형 내각의 크기의 합은 180°이므로 세 각을 모두 더하면 180°가 되어야겠죠?
x + x + 20° + 2x = 180°
4x = 160°
x = 40°
x는 40°네요.
(2)에서는 x가 내각에도 표시되어 있지만 외각에도 표시되어있어요. 내각이 하나는 x이고 다른 하나는 직각표시가 있으니 90°네요. 외각이 하나 표시되어 있으니까 한 외각의 크기는 이웃하지 않은 두 내각의 합과 같은 성질을 이용해보죠.
x + 90° = 3x
2x = 90°
x = 45°
x는 45°네요. 직각이등변삼각형이었군요.
함께 보면 좋은 글
평행선의 성질, 평행선에서 동위각과 엇각
다각형, 내각, 외각, 정다각형
다각형 내각의 크기의 합과 외각 크기의 합
대각선의 개수구하기, 대각선의 개수 공식
다각형, 내각, 외각, 정다각형
새로운 단원의 시작이에요. 평면도형에 대해서 공부할 거예요.
평면도형은 앞에서 공부했던 평면 위에 있는 도형을 말해요. 더 깊이 생각할 필요도 없어요.
이 단원에서는 평면도형의 종류를 알아보고 그 도형마다 어떤 특징이 있는지 공부할 거예요. 우선 이 글에서 우리가 알고 있는 삼각형, 사각형 등에서 사용하는 용어와 그 특징들을 알아보죠.
용어라 해봐야 두 세 개밖에 안되니까 어렵게 생각하지 말고, 용어의 정의보다는 특징과 관련성 등에 주목해서 읽어보세요.
다각형
다각형은 이름 그대로 각이 여러 개 있는 도형이에요. 다시 말해 여러 개의 선분으로 둘러싸인 평면 위의 도형이죠. 대표적인 다각형은 뭐가 있어요? 맞아요. 삼각형, 사각형, 오각형 등이 있어요.
원은 다각형이 아니에요. 각이 없잖아요.
보통 다각형은 둘러싸인 선분의 개수로 이름을 부르는데 선분이 3개이면 삼각형, 4개이면 사각형이라고 해요. 선분이 n개이면 n각형이라고 하지요. 각의 개수에 따라 불러도 똑같죠.
내각, 외각
다각형에서 꼭짓점은 알파벳 대문자를 사용해서 A, B, C … 순서로 이름을 적어요. 위 그림에서도 각 꼭짓점에 알파벳으로 이름을 붙였네요.
내각이라는 게 있어요. 다각형의 한 꼭짓점에서 이웃하는 두 변으로 이루어진 각을 말해요. 이름 그대로 다각형의 안쪽에 있는 각이죠. 위 그림에서 내각은 ∠A, ∠B, ∠C, ∠D, ∠E 이렇게 총 다섯 개가 있어요. 오각형이니까요.
외각은 내각과 반대로 바깥에 있는 각이에요. 다각형의 한 내각의 꼭짓점에서 한 변과 그 변에 이웃한 변의 연장선이 이루는 각이에요. 다각형의 변 하나를 원래보다 길게 죽 그어요. 이렇게 길게 그은 선과 그 옆에 있는 선과 이루는 각이 외각이에요.
위 그림에서 변 CD의 연장선을 그었더니 ∠EDF라는 각이 생겼어요. 이 각이 바로 ∠CDE의 외각이에요. 또 변 DE의 연장선을 그었더니 ∠CDG라는 각이 생기죠? 이 각도 역시 ∠CDE의 외각이에요. ∠CDE의 외각이 ∠EDF와 ∠CDG 두 개가 생겼어요. 그런데 잘 보면 이 두 각은 직선 CF와 직선 EG라는 두 직선이 만나서 생기는 맞꼭지각이죠? 맞꼭지각은 크기가 같으니까 두 외각도 크기가 같아요. ∠EDF = ∠CDG
내각인 ∠CDE와 외각인 ∠EDF를 더하면 몇 °가 될까요? 두 각을 더하면 ∠CDF가 되는데 이건 평각이라서 180°예요. (내각) + (외각) = 180°
자, 다음 두 가지를 기억하세요.
한 꼭짓점에서 두 개의 외각은 맞꼭지각으로 크기가 같다
한 꼭짓점에서 내각과 그 이웃한 외각의 합은 180°
내각과 외각의 설명이 어렵죠? 그냥 정의를 그렇게 하는 거지 외워야하는 건 아니에요. 내각과 외각이 무엇을 의미하는지 알고 그림에서 내각과 외각을 찾을 줄 알면 돼요.
정다각형은 정삼각형, 정사각형처럼 모든 변의 길이가 같고 내각의 크기가 모두 같은 다각형을 말해요. (내각) + (외각) = 180°인데, 내각의 크기가 모두 같으니까 외각의 크기도 모두 같겠죠? n개의 선분으로 둘러싸인 정다각형은 정n각형이라고 불러요.
함께 보면 좋은 글
대각선의 개수구하기, 대각선의 개수 공식
삼각형 내각의 합과 외각의 크기, 외각의 합
다각형 내각의 크기의 합과 외각 크기의 합