선분

이 글에서는 수학에서 사용하는 거리라는 개념의 정확한 뜻에 대해서 알아볼 거예요. 그 거리 개념을 이용해서 점과 점 사이의 거리도 알아볼 거고요. 두 점의 한가운데 있는 점에 대해서도 알아볼 거예요.

집에서 학교까지의 거리를 말할 때 우리는 보통 우리가 다니는 길을 그대로 갔을 때의 거리를 얘기하죠? 실제 이동한 거리요. 때로는 시간으로 표현하기도 하고요.

그런데 어떤 날은 큰길로 학교에 가고 다른 날은 지름길로 갈 때 이동 거리는 달라질 수 있어요. 이동 거리라는 건 때에 따라 달라질 수도 있다는 거예요.

하지만 수학의 도형에서의 거리는 두 지점 사이의 가장 가까운 거리를 말해요. 사람이 다닐 수 있느냐 없느냐는 절대 고려하지 않지요.

아래 지도에서 빨간색 선은 실제 이동 경로에 따른 거리이고 파란색 선은 거리라고 할 수 있어요.

집과 학교 사이의 거리

두 점 사이의 거리

두 점 A, B 사이의 거리는 두 점을 연결하는 무수히 많은 선 중에서 길이가 가장 짧은 선의 길이를 말하는데, 길이가 가장 짧은 선은 선분 AB에요. 따라서 두 점 A, B 사이의 거리는 선분 AB의 길이를 뜻해요.

두 점 A, B 사이의 거리 = 선분 AB의 길이

두 점 A, B 사이의 거리 그러니까 선분 AB의 길이를 기호로 선분 AB로 표시하는데요. 기본 도형 - 점, 선, 면, 직선, 반직선, 선분에서 선분 AB는 선분 AB를 나타낸다고 했죠? 이 기호 선분 AB는 선분 AB이기도 하고, 선분 AB의 길이이기도 해요. 두 가지 뜻이 있어요.

집과 학교 사이의 거리도 마찬가지로 가장 짧은 직선거리를 나타내니까 파란색으로 표시된 선의 길이인 거지요.

중점

중점(中點)은 말 그대로 가운데 있는 점을 말해요. 무엇의 가운데? 두 점의 가운데 있다는 뜻이죠. 보통 알파벳으로 M(Middle point, Median point)이라고 써요

두 점 A, B가 있는데, 중점 M은 두 점의 한가운데에 있으니까 A에서 중점까지의 거리(선분 AM의 길이)와 B에서 중점까지의 거리(선분 BM의 길이)가 같겠죠? 따라서 중점을 정의할 때 가운데 있는 점이라고 하지 않고, 선분 AM과 선분 BM의 길이가 같을 때 점 M을 중점이라고 해요.

중점

M은 중점이니까 선분 AM의 길이는 전체 길이인 선분 AB의 길이의 절반이겠죠? 다른 말로 하면 중점 M은 선분 AB 길이를 이등분한다고 할 수 있는 거죠.

두 점 A, B와 중점 M
중점의 성질

거리와 중점은 오직 선분에서만 구할 수 있어요. 직선이나 반직선은 시작점 혹은 끝점이 끝도 없이 계속되니까 거리나 중점을 구할 수 없어요. 직선 위의 두 점 A, B, 반직선 위의 두 점 C, D 사이의 거리나 중점을 구할 수는 있어요. 하지만 이때 두 점이라는 특정한 위치가 정해졌으니까 직선이 아니라 선분 AB, 선분 CD가 되어서 구할 수 있는 거예요.

점 M은 선분 AB의 중점이고 점 N은 선분 BM의 중점이다. 선분 AB의 길이가 20cm일 때 선분 MN의 길이를 구하여라.
중점 예제

M이 선분 AB의 중점이니까 선분 AM의 길이는 전체 길이의 절반이겠죠? 20 ÷ 2 = 10 (cm)예요. 선분 AM = 선분 BM = 10cm죠. 마찬가지로 점 N은 선분 BM의 중점이니까 선분 MN의 길이는 선분 BM의 절반이겠죠? 10 ÷ 2 = 5 (cm)예요. 선분 MN = 선분 BN = 5cm이니까 선분 MN은 5cm입니다.

함께 보면 좋은 글

기본 도형 - 점, 선, 면, 직선, 반직선, 선분
평각, 직각, 예각, 둔각
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리
작도, 수직이등분선의 작도

정리해볼까요

두 점 A, B 사이의 거리

  • 선분 AB의 길이
  • 중점 M: 중점
<<    중1 수학 목차    >>
 
그리드형

새로운 단원인 도형 단원이에요.

도형은 그림이 많이 나오니까 그림을 보고 무슨 도형인지 어떤 특징이 있는지 빨리 파악해야 해요.

언제나 마찬가지지만 단원의 첫 부분에는 단원에서 사용할 용어들을 배우지요. 이 글에서는 도형을 이루는 가장 기본적인 것인 , , 직선, 반직선, 선분의 정의에 대해서 정리해 볼게요.

사실 처음 듣는 단어들은 없어요. 그렇다고 뜻을 모르는 것도 아니고요. 다만 좀 더 구체적인 수학적 의미로서 꼭 알고 있어야할 내용이에요.

점, 선, 면

점은 딱히 뭐라고 설명하기가 좀 그렇네요. 그냥 연필로 딱 한 번 찍은 것을 점이라고 하잖아요. 우리가 알고 있는 그 점입니다.

선은 무수히 많은 점이 모여서 이루어진 걸 말해요. 그냥 죽 그은 것처럼 보이지만 아주 많은 점을 아주 가깝게 많이 찍으면 그게 선이 되는 거예요.

조금 더 멋있게(?) 표현하면 점들이 연속적으로 움직인 자리가 바로 선이에요.

면은 무수히 많은 선이 모여서 이루어진 걸 말해요. 보통 우리는 면을 그리면 모서리만 그리죠? 직사각형을 그리면 선을 네 개만 그어서 바깥쪽에는 선이지만 안쪽은 비어있다고 생각하기 쉬운데, 사실 채우지 않았다 뿐이지 선으로 둘러싸인 모든 곳에 선이 그어져 있다고 생각해야 해요.

그래서 면은 선들이 연속적으로 움직인 자리라고 정의해요.

선과 면의 정의

교점과 교선

교점과 교선에서 교는 섞이다는 뜻인데 여기서는 서로 만난다는 뜻으로 해석해요.

교점은 말 그대로 만나는 점이라는 뜻인데, 뭐가 만나느냐? 선과 선이 만나는 점 또는 면과 선이 만나서 생기는 점을 교점이라고 해요.

이때 선과 면은 꼭 반듯한 직선이 아니어도 상관없어요. 곡선이나 휘어진 면이 만나서 생기는 곳도 교점이라고 해요.

교점

교선은 면과 면이 만나서 생기는 선이에요. 면과 면이 만날 때는 만나는 점이 하나만 생기는 것이 아니라 여러 개가 생기는 데, 그 여러 개가 모여서 바로 선이 되는 거죠.

교선

직선, 반직선, 선분

직선은 서로 다른 두 점에 의해서 결정돼요. 그러니까 점이 하나만 있다면 그 점을 지나는 선은 무수히 많이 그릴 수 있어요. 하지만 서로 다른 두 점이 있으면 그 두 점을 모두 지나는 직선은 딱 하나만 생겨요.

그래서 직선을 정의할 때는 서로 다른 두 점을 이용해서 정의합니다.

직선은 서로 다른 두 점 A, B를 지나 한없이 곧게 뻗은 선이에요. 두 점을 지나야 하고 끝이 없이 계속되어야 해요. A, B를 지나지만 어는 한 곳에서 끝나면 직선이라고 하지 않아요. 또 하나 중요한 건 곧게 뻗은 선이어야 한다는 거예요. 중간에 휘어지면 안 돼요.

직선은 지나는 두 점을 이용해서 표시하는데, A, B를 지나기 때문에 알파벳 A와 B를 이용해서 직선 AB라고 하기도 하고 기호로 직선 AB로 표시하기도 해요. 선이 A와 B를 지나서도 계속되니까 화살표를 양쪽으로 표시하는 거예요. 혹 두 점 A, B가 정의되지 않았거나 간단히 쓰고 싶을 때는 소문자 l(엘)을 써서 직선 l이라고 쓰기도 해요.

직선

반직선은 직선 AB 위의 한 점 A에서 출발해서 점 B쪽으로 곧게 뻗은 선을 말해요. 반직선에서 중요한 것은 출발점이 있다는 거예요. 직선은 점 A을 지나서 계속되어야 하지만 반직선은 점 A를 지나는 것이 아니라 바로 그 위에서 시작한다는 거지요. 넘어가면 안 된다는 얘기에요.

반직선도 마찬가지로 알파벳 A와 B를 이용해서 표시해요. 반직선 AB라고 하기도 하고, 기호로 반직선 AB로 표시하기도 해요. 선이 A에서 출발해서 B쪽 방향으로 계속되니까 B쪽 방향으로 화살표가 하나만 있어요.

반직선

선분은 직선 AB 위의 점 A에서 B까지의 부분을 말해요. 점에서 점까지 에요. 점을 넘어가는 건 아닙니다.

선분은 선분 AB라고 하기도 하고, 기호로는 선분 AB로 표시해요. 선이 A에서 B로 끝나니까 화살표가 없는 그냥 선만 그어요.

선분

반직선 AB(반직선 AB)와 반직선 BA(반직선 BA)는 달라요. 출발점이 다르잖아요. 반직선 AB는 출발점이 A이고, 반직선 BA는 출발점이 B에요. 두 반직선이 서로 같으면 출발점이 같아야 한다는 것도 잊지 마세요.

그 외 직선 AB와 직선 BA는 같고, 선분 AB와 선분 BA도 같아요.

아래 그림을 보고, 직선, 반직선, 선분으로 구분하시오.

위 그램에서는 선 양쪽으로 화살표가 하나도 없지요. 화살표가 어느 방향으로 나 있느냐를 보고 반직선의 방향을 찾기도 하거든요. 하지만 화살표가 표시되는 경우보다 표시되지 않는 경우가 훨씬 많아요. 이때는 선이 점을 지나서 더 이어지는지 아닌 지를 보고 판단해야 해요.

첫 번째 그림은 M, N이라는 두 점이 있는데, 선이 두 점을 모두 지나서도 연결이 되어 있네요. 그래서 이건 직선이고 두 점 M, N을 지나니까 직선 MN(직선 MN)입니다.

오른쪽 위의 그림에서는 점 M에서는 점 위에서 선이 끝나고, 점 N에서는 선이 계속 이어져 있죠? 그래서 점 M에서 출발해서 점 N으로 가는 반직선 MN(반직선 MN)이네요.

왼쪽 아래 그림은 반대로 점 M에서는 계속 이어져 있고, 점 N에서는 끝나니까 점 N에서 출발해서 점 M으로 가는 반직선 NM(반직선 NM)이고요.

마지막 오른쪽 아래 그림은 선이 모두 두 점에서 끝나니까 선분 MN(선분 MN)이에요.

함께 보면 좋은 글

두 점 사이의 거리, 중점
평각, 직각, 예각, 둔각
수직과 직교, 수선, 수선의 발, 점과 직선 사이의 거리

정리해볼까요

점, 선, 면

  • 선: 무수히 많은 점이 모인 것. 점들이 연속적으로 움직인 자리
  • 면: 무수히 많은 선이 모인 것, 선들이 연속적으로 움직인 자리
  • 교점: 선과 선, 선과 면이 만나는 점
  • 교선: 면과 면이 만나서 생기는 선

직선, 반직선, 선분

  • 서로 다른 두 점을 지나는 직선은 하나
  • 직선: 두 점 A, B를 지나는 한없이 곧게 뻗은 선. 직선 AB 또는 직선 AB
  • 반직선: 점 A에서 출발하여 점 B 방향으로 곧게 뻗은 선. 반직선 AB 또는 반직선 AB
  • 선분: 직선에서 두 점 A와 B를 연결하는 부분. 선분 AB 또는 선분 AB
<<    중1 수학 목차    >>
 
그리드형

+ 최근글