사각형이 원에 내접하기 위한 조건

네 점이 한 원 위에 있을 조건은 전에 한 번 공부했어요. 네 점이 한 원 위에 있을 조건에서 원주각과 대각의 합, 내대각을 이용한 조건을 공부했었죠.

이 글에서 할 건 했던 게 또 나오는 게 아니라 새로운 방법을 공부하는 거에요. 정확히 말해서 새로운 방법이라고 하는 것도 맞는 건 아니에요. 이미 배운 것이죠.

이미 배웠던 걸 네 점이 한 원 위에 있을 조건에 적용하는 것뿐이에요. 바로 원과 비례를 이용해서 네 점이 한 원 위에 있는지 알아볼 수 있어요. 그러니까 원과 비례에 대해서 알고 있어야겠죠?

네 점이 한 원 위에 있을 조건

원과 비례에서 두 가지를 공부했죠?

하나는 원의 두 현의 교점에서 각 현의 양쪽 끝점까지의 거리의 곱이 서로 같다는 것이었고요. 다른 하나는 현의 연장선(할선)의 교점에서 현의 양 끝점까지의 거리의 곱이 같다는 거였어요.

네 점이 한 원 위에 있을 조건 두 번째의 핵심은 바로 네 점이 현의 양 끝점이 되는 거예요.

네 점을 두 대각선으로 잇고 그 교점을 이용

아래 그림을 보세요.

네 점이 있는데, 대각선으로 이었더니 교점이 생겼죠? 원만 없다 뿐이지 원과 비례에서 했던 공식을 그대로 적용할 수 있어요.

왜 그럴까요? 원만 그려보면 간단히 알 수 있어요.

네 점이 원 위에 있으니까 네 점을 지나는 원을 그려보세요. 그러면 네 점은 현의 양 끝점이 되고, 교점이 있는 그림으로 바뀌었어요. 이건 원과 비례에서 봤던 그림과 완전히 같은 그림이에요.

이 유형의 문제를 풀 때는 원을 그려서 풀어야 해요. 원이 있으면 훨씬 유리하거든요.

다음 그림에서 네 점 A, B, C, D가 한 원 위에 있을 때 x를 구하여라.

네 점을 선분으로 이었을 때 교점에서 각 꼭짓점까지의 거리의 곱이 같으므로 식을 세워보면
4 × x = 3 × 7
x = (cm)

네 점을 두 선분으로 잇고 그 연장선의 교점을 이용

이번에는네 점을 두 개의 선분으로 잇고, 그 연장선의 교점이 나와 있을 때에요.

마찬가지로 네 점이 원 위에 있으니까 네 점을 지나는 원을 그려보자고요.

원과 비례 두 번째에서 봤던 그림과 똑같죠?

똑같은 그림인데, 원이 그려져 있으면 원과 비례, 원이 빠져있으면 네 점이 한 원 위에 있을 조건이에요.

다음 그림에서 네 점 A, B, C, D가 한 원 위에 있고, 의 연장선의 교점이 점 P일 때, x를 구하여라.

연장선의 교점에서 각 꼭짓점까지의 거리의 곱이 같으므로 식을 세워보면,
(9 + 3) × 3 = (5 + x) × x
36 = 5x + x2
x2 + 5x - 36 = 0
(x + 9)(x - 4) = 0
x = 4 (x > 0)

네 점이 한 원 위에 있을 조건 총정리

네 점이 한 원 위에 있을 조건을 두 가지 공부했어요. 원 위에 있는 네 점을 선으로 연결하면 사각형이 되잖아요. 따라서 사각형이 원에 내접할 조건과 같다고 할 수도 있어요. 전에 공부했던 두 가지와 이 글에서 공부한 한 가지를 한 번에 정리해보죠.

  • 네 점을 선분으로 연결하고 교점과 네 점 사이의 거리가 나와 있으면 원과 비례 이용합니다.
  • 네 점과 이웃한 두 각의 크기가 나와 있으면 네 점이 한 원 위에 있을 조건을 이용.
    두 점을 선분으로 잇고, 선분을 이루는 두 점과 나머지 한 점으로 각을 만들어서 두 각의 크기가 서로 같을 때 - 원주각 이용
  • 사각형이 그려져 있고, 대각의 크기나 외각의 크기가 나와 있으면 사각형이 원에 내접하기 위한 조건을 이용
    한 쌍의 대각의 합 = 180°
    한 외각 = 내대각

함께 보면 좋은 글

네 점이 한 원 위에 있을 조건
원에 내접하는 사각형의 성질, 내대각
사각형이 원에 내접하기 위한 조건
원과 비례, 원과 비례 증명
두 원에서 원과 비례

정리해볼까요

네 점이 한 원 위에 있을 조건

  • 네 점을 지나는 원을 그린 후, 원과 비례를 이용
 
그리드형

원에 내접하는 사각형의 성질을 두 가지 공부했어요. 한 쌍의 대각의 크기의 합이 180°라는 것과 한 외각의 크기와 내대각의 크기가 같다는 거지요. 그러면서 이 두 가지 성질의 역이 성립한다고 했죠? 바로 이 성질의 역이 사각형이 원에 내접하기 위한 조건이에요. 따라서 사각형이 원에 내접하기 위한 조건은 따로 공부할 게 없어요.

한가지 추가해야 할 게 있는데 그것도 이미 공부한 내용이에요. 네 점이 한 원 위에 있을 조건이죠.

이 글은 새로운 걸 공부한다기보다는 이전에 공부했던 걸 한 번 더 정리하고 넘어간다고 생각하세요.

사각형이 원에 내접하기 위한 조건

사각형의 네 점이 원 위에 있을 때

사각형은 각이 네 개 또는 점이 네 개인 도형이죠? 사각형이 원에 내접한다는 말을 다르게 하면, 네 꼭짓점이 한 원 위에 있다고 얘기할 수 있겠죠?

네 점이 한 원 위에 있을 조건은 이미 공부했잖아요. 바로 그 조건을 만족시키는 네 점을 연결하면 원에 내접하는 사각형을 그릴 수 있어요.

네 점이 한 원 위에 있을 조건을 다시 한 번 정리해 보죠.

네 점이 한 원 위에 있을 조건

네 점 A, B, C, D가 한 원위에 있을 조건
점 C, 점 D가 선분 AB에 대하여 같은 쪽에 있고
∠ACB = ∠ADB 일 때

한 쌍의 대각의 크기의 합은 180°

원에 내접하는 사각형의 성질 첫 번째에요. 한 쌍의 대각의 합이 180°라는 거죠.

원에 내접하는 사각형의 성질 1

한 외각의 크기와 내대각의 크기가 같다.

원에 내접하는 사각형의 성질 두 번째에요.

원에 내접하는 사각형의 성질 2

항상 원에 내접하는 사각형

원에 내접하는 사각형은 위에서 말한 특별한 조건을 갖춰야만 해요. 사각형 중에서 위의 조건을 항상 만족시키는 사각형들이 있어요. 바로 정사각형직사각형등변사다리꼴이에요.

정사각형과 직사각형은 네 내각의 크기가 모두 90°에요. 따라서 한 쌍의 대각의 크기의 합이 180°이므로 원에 내접하는 사각형이죠.

등변사다리꼴은 두 밑각의 크기가 같고, 위에 있는 각의 크기도 서로 같아요. 위에 있는 각의 크기를 a, 밑각의 크기를 b라고 한다면 내각의 크기의 합은 2a + 2b = 360°에서 a + b = 180°가 되죠. 즉 등변사다리꼴도 대각의 크기의 합이 180°로 항상 원에 내접하는 사각형이에요.

사각형이 원에 내접하는지 확인하기
네 점이 한 원 위에 있는지 확인 - 한 변을 기준으로 하여 같은 쪽에 있는 두 각의 크기가 같은지 확인
한 쌍의 대각의 크기의 합이 180°인지 확인
한 외각과 내대각의 크기가 같은지 확인

함께 보면 좋은 글

원의 외접사각형, 외접사각형의 성질
네 점이 한 원 위에 있을 조건
원에 내접하는 사각형의 성질, 내대각
[중등수학/중2 수학] - 사다리꼴의 정의, 등변사다리꼴의 정의와 등변사다리꼴의 성질

정리해볼까요

사각형이 원에 내접하기 위한 조건

  • 사각형의 네 점이 원 위에 있을 때: 한 변을 기준으로 하여 같은 쪽에 있는 두 점에 대한 원주각의 크기가 같을 때
  • 한 쌍의 대각의 크기의 합 = 180°
  • 한 외각 = 내대각
  • 정사각형, 직사각형, 등변사다리꼴은 항상 원에 내접
 
그리드형

+ 최근글