다항식의 계산

단항식은 항이 하나만 있는 식이죠. 다항식은 항이 여러 개 있는 식을 말해요. 헷갈리면 안되는 게 단항식도 다항식의 한 종류에요. 다항식은 항이 한 개이상있는 식이니까요.

다항식의 덧셈과 뺄셈은 중학교 때 다항식의 계산에서 해봤어요. 동류항끼리 모아서 계산하는 거였죠? 그리고 다항식의 곱셈도 해봤는데, 분배법칙곱셈공식 - 완전제곱식, 곱셈공식 두 번째 - 합차공식을 이용해서 전개한 후에 동류항끼리 정리를 했어요.

이 글에서 공부하는 다항식의 계산은 중학교에서 공부했던 내용을 한 번 더 정리하고 복습하는 과정이에요.

다항식의 연산법칙

a + b = b + a, ab = ba가 성립하는 걸 교환법칙이라고 해요. (a + b) + c = a + (b + c), (ab)c = a(bc)가 되는 걸 결합법칙이라고 하고요. (a + b)c = ac + bc를 분배법칙이라고 하죠. 이 때, a, b, c는 숫자였어요.

다항식의 연산법칙에서는 A, B, C를 사용하는데, 이 A, B, C는 숫자가 아니라 다항식이에요. a, b, c가 숫자라고는 하지만 넓게 보면 상수항이고 단항식에 해당하니까 A, B, C 자리에 들어가도 상관없어요.

세 다항식 A, B, C에 대하여
교환법칙: A + B = B + A, AB = BA
결합법칙: (A + B) + C = A + (B + C)
분배법칙: (A + B)C = AC + BC

A = 2x2 + 3x + 1, B = x2 - 2x - 8, C = 3x - 2라고 하죠.
(2x2 + 3x + 1) + (x2 - 2x - 8) = (x2 - 2x - 8) + (2x2 + 3x + 1)이 된다는 거예요.

새로운 얘기는 아니니까 굳이 전부 증명할 필요는 없겠죠?

다항식의 계산

다항식의 덧셈과 뺄셈

다항식의 덧셈과 뺄셈은 동류항을 찾는 게 제일 중요해요. 문자와 차수가 같은 항을 찾아서 앞의 계수끼리 계산하는 거죠.

단, 계산에서 괄호가 있다면 괄호를 먼저 풀고 계산을 해야하고요. 그리고 마지막에는 한 문자를 정해서 내림차순으로 정리하면 끝이에요. 내림차순은 어떤 문자에 대해서 차수가 높은 항부터 낮은 항의 순서대로 쓰는 걸 말해요.

  1. 괄호를 푼다. ( ) → { } → [ ]
  2. 동류항을 찾아 계산
  3. 내림차순으로 정리

다항식의 곱셈

다항식의 곱셈이 바로 곱셈공식이에요. 곱셈공식을 이용해서 전개를 하고, 동류항을 찾아서 계산을 하는 거죠. 물론 이 때도 내림차순으로 정리를 하세요.

A = 2x2 + 3x + 1, B = x2 - 2x - 8, C = 3x - 2일 때, 다음을 간단히 하여라.
(1) 2A - (B + C)
(2) AC - 3B

식의 값을 구하는 문제에요. 대입하죠.

(1) 2A - (B + C)
= 2(2x2 + 3x + 1) - {(x2 - 2x - 8) + (3x - 2)}
= 4x2 + 6x + 2 - (x2 + x - 10)
= 4x2 + 6x + 2 - x2 - x + 10
= 3x2 + 5x + 12

(2) AC - 3B
= (2x2 + 3x + 1)(3x - 2) - 3(x2 - 2x - 8)
= 6x3 + 9x2 + 3x - 4x2 - 6x - 2 - 3x2 + 6x + 24
= 6x3 + 2x2 + 3x + 22

함께 보면 좋은 글

[중등수학/중1 수학] - 단항식과 다항식, 항, 상수항, 계수, 차수
[중등수학/중1 수학] - 동류항, 동류항의 덧셈과 뺄셈
[중등수학/중1 수학] - 분배법칙, 분배법칙, 교환법칙, 결합법칙 비교
[중등수학/중2 수학] - 다항식의 계산, 다항식의 덧셈과 뺄셈
[중등수학/중2 수학] - 곱셈공식 - 완전제곱식
[중등수학/중2 수학] - 곱셈공식 두 번째 - 합차공식 외

정리해볼까요

다항식의 계산

  1. 괄호 풀기 ( ) → { } → [ ]
    괄호를 풀 때는 분배법칙과 곱셈공식을 이용
  2. 동류항끼리 계산
  3. 내림차순으로 정리
<<  수학 1 목차  >>
 
그리드형

1학년 때 다항식의 계산을 공부했어요. 특히 일차식의 덧셈과 뺄셈을 많이 연습했었죠? 이번 글에서는 다항식 중에서도 이차식의 덧셈과 뺄셈을 공부할 거예요. 그리고 문자가 한 개가 아니라 여러 개 있는 식도 계산할 거예요.

큰 틀에서 보면 1학년 때 했던 동류항의 계산과 똑같으니까 어렵게 생각할 필요는 없어요. 다만 항의 개수가 늘어나다 보니 뭔가 더 복잡해 보이고 어려워 보이는 것뿐이에요.

계산과정에서 실수가 많이 나올 수 있으니까 집중해서 보세요. 계산을 한 항에는 줄을 긋는 등의 표시를 하는 것도 괜찮은 방법이니까 사용해 보시고요. 

다항식의 덧셈과 뺄셈

1학년 때의 다항식의 계산과 달라진 것이 있다면 문자의 개수와 차수가 늘어났다는 거예요. 1학년 때는 문자가 한 개였고, 차수는 1이었죠. 이제는 문자의 개수가 2개 이상이고, 차수도 2로 높아져요.

하지만 문자와 차수가 같은 동류항끼리 묶어서 계산한다는 원칙만 기억하고 있다면 크게 어렵지는 않죠.

2a + b + 3a - 2b라는 식을 볼까요? a라는 문자와 b라는 문자가 있어요. 2a와 3a가 동류항이고, b와 -2b가 동류항이죠. 따로 계산하면 돼요.

2a + b + 3a - 2b
= 2a + 3a + b - 2b
= 5a - b

괄호가 있으면 분배법칙을 이용해서 괄호를 풀고 동류항끼리 묶어서 계산해요. 또, 괄호가 여러 개 있으면 소괄호(), 중괄호{}, 대괄호[] 순으로 풀어요.

3(5a - 2b) - (3a + b)
= 15a - 6b - 3a - b
= 15a - 3a - 6b - b
= 12a - 7b

다항식의 계산: 문자와 차수가 같은 동류항끼리 계산
괄호가 있으면 분배법칙을 이용
소괄호, 중괄호, 대괄호 순으로 괄호를 푼다.

다음을 간단히 하여라.
(1) 3(a + b) - 2(a - b)
(2) 3a + 2[b + 3{a + 3b - (2b - b)} + 3a]

괄호가 있으면 소괄호, 중괄호, 대괄호 순서로 분배법칙을 이용해서 풀고 동류항끼리 계산을 해요.

(1)은 분배법칙을 이용해서 풀어야겠네요.
3(a + b) - 2(a - b)
= 3a + 3b - 2a + 2b
= 3a - 2a + 3b + 2b
= a + 5b

(2)번은 괄호가 여러 개 있어요. 소괄호부터 차례로 하나씩 풀어보죠.
3a + 2[b + 3{a + 3b - (2b - b)} + 3a]
= 3a + 2[b + 3{a + 3b - b} + 3a]
= 3a + 2[b + 3{a + 2b} + 3a]
= 3a + 2[b + 3a + 6b + 3a]
= 3a + 2[7b + 6a]
= 3a + 14b + 12a
= 15a + 14b

이차식의 덧셈과 뺄셈

일차식은 최고차항의 차수가 1인 식이에요. 그럼 이차식은 최고차항의 차수가 2인 식을 말하겠죠? 이차식은 차수가 2인 항이 하나 더 생기는 것뿐이에요.

3a2 + 5a - 1 이런 식이 이차식이죠. 이때 일차항이나 상수항이 없어도 이차식이에요. 3a2 + 5a도 이차식이고, 3a2 - 1도 이차식, 3a2만 있어도 이차식이에요. 하지만 이차항은 꼭 있어야 해요.

이차식을 계산한 후에 답을 쓸 때는 차수가 높은 수부터 내림차순으로 정리해요. 이차항, 일차항, 상수항의 순서로 쓰는 거죠. 순서가 다르다고 해서 틀린 건 아니지만, 내림차순으로 쓰기로 약속했어요.

이차식: 최고차항의 차수가 2인 다항식
동류항 계산: 이차항끼리, 일차항끼리, 상수항끼리 계산
내림차순: 이차항, 일차항, 상수항의 순서로

(2a2 + 3a + 1) + (a2 + 3)을 계산해보죠. a2라는 이차항, a의 일차항, 상수항으로 되어 있어요. 두 번째 괄호 안에는 일차항이 없지만 상관없어요.

(2a2 + 3a + 1) + (a2 + 3)
= 2a2 + a2 + 3a + 1 + 3
= 3a2 + 3a + 4

여기서도 괄호가 있다면 분배법칙을 이용해서 풀어서 동류항끼리 묶어서 계산합니다.

2(a2 + 3a + 1) - 3(a2 + a - 1)
= 2a2 + 6a + 2 - 3a2 - 3a + 3
= 2a2 - 3a2 + 6a - 3a + 2 + 3
= -a2 + 3a + 5

다음을 간단히 하여라.
(1) (2 - a - 3a2) + (4a2 + 2a - 2)
(2) 3(a2 + 3a + 3) + 4(a2 - 3a) - 2

이차식에서는 동류항이 이차항, 일차항, 상수항의 세 항이 있으니까 따로 계산하면 돼요. 그리고 답을 쓸 때는 내림차순으로 쓰고요.

(1) (2 - a - 3a2) + (4a2 + 2a - 2)
= -3a2 + 4a2 - a + 2a + 2 - 2
= a2 + a

(2) 3(a2 + 3a + 3) + 4(a2 - 3a) - 2
= 3a2 + 9a + 9 + 4a2 - 12a - 2
= 3a2 + 4a2 + 9a - 12a + 9 - 2
= 7a2 - 3a + 7

함께 보면 좋은 글

단항식의 곱셈과 나눗셈
단항식과 다항식의 곱셈과 나눗셈
지수법칙 - 곱셈, 거듭제곱
지수법칙 - 나눗셈, 괄호, 분수
[중등수학/중1 수학] - 일차식의 덧셈과 뺄셈, 동류항, 동류항의 덧셈과 뺄셈

정리해볼까요

다항식의 덧셈과 뺄셈

  • 동류항 계산: 문자와 차수가 같은 항끼리 따로 계산
  • 괄호가 있으면 분배법칙
  • 소괄호, 중괄호, 대괄호 순으로 괄호 풀기
  • 이차식의 덧셈과 뺄셈: 동류항 계산, 내림차순으로 씀.
 
그리드형

+ 최근글