무리함수의 그래프
무리함수 2. 무리함수 그래프의 평형이동
무리함수의 뜻과 성질을 공부했으니 이제 다른 형태의 무리함수에 대해서 알아보죠. 앞서 유리함수에서도 그랬듯이 기본형을 공부하고 나서 다른 형태의 함수를 공부할 때는 기본형을 평행이동한 걸 공부해요. 따라서 기본형의 성질을 잘 알고 있어야 해요.기본형에서 다른 형태로 평행이동을 하게되면 어떤 성질이 어떻게 바뀌는 지만 잘 파악하면 돼요.
이런 진행과정은 이차함수의 평행이동은 물론이고, 원의 방정식에서도 했던 과정이에요.
여러 형태의 무리함수 중에서 모양을 바꿔야하는 경우도 있으니 이 경우도 잘 봐두세요.
무리함수
무리함수
(a ≠ 0)의 그래프
유리함수 2, 분수함수에서 의 그래프는
의 그래프를 x축 방향으로 p만큼, y축 방향으로 q만큼 평행이동한 그래프라고 했어요.
마찬가지로 (a ≠ 0)의 그래프는
(a ≠ 0)의 그래프를 x축 방향으로 p만큼, y축 방향으로 q만큼 평행이동한 그래프예요.
무리함수의 정의역은 근호 안의 부분이 0 또는 양수가 되는 x의 범위이고 그에 따라 치역도 정해진다고 했어요. a > 0일 때, 의 정의역은 {x|x ≥ p}이고, 치역은 {y|y ≥ q}가 됩니다.
a(x - p) ≥ 0
x - p ≥ 0 (∵ 양변 ÷ a)
x ≥ p
a < 0이라면 (양변 ÷ a)에서 부등호의 방향이 바뀌겠죠? 따라서 a < 0이면 의 정의역은 {x|x ≤ p}가 되고, 치역은 {y|y ≥ q}가 돼요. a의 부호가 정의역 부등호의 방향에 영향을 줘요. 치역은 a의 부호와 상관없이 같고요.
(a ≠ 0)의 그래프
(a ≠ 0)의 그래프를 x축 방향으로 p만큼, y축 방향으로 q만큼 평행이동한 그래프
a > 0일 때, 정의역은 {x|x ≥ p}, 치역은 {y|y ≥ q}
a < 0일 때, 정의역은 {x|x ≤ p}, 치역은 {y|y ≥ q}
(a ≠ 0)의 그래프
의 그래프는
꼴로 바꿔서 풀어요.
식의 모양을 바꾸니 (a ≠ 0)의 그래프)의 그래프는
(a ≠ 0)의 그래프를 x축 방향으로
만큼, y축 방향으로 c만큼 평행이동한 그래프라는 걸 알 수 있어요.
a > 0일 때, 정의역 {x|x ≥ }이고 치역은 {y|y ≥ c}가 되겠네요. a < 0일 때, 정의역 {x|x ≤
}이고 치역은 {y|y ≥ c}가 되겠네요.
(a ≠ 0)의 그래프
의 꼴로 변형
(a ≠ 0)의 그래프를 x축 방향으로
만큼, y축 방향으로 c만큼 평행이동한 그래프
함께 보면 좋은 글
무리함수, 무리함수의 그래프
유리함수, 다항함수, 분수함수, 점근선
유리함수 2, 분수함수
분수함수의 역함수, 분수함수의 역함수 구하는 방법
무리함수, 무리함수의 그래프
유리함수에 이어 무리함수예요. 무리함수는 유리함수보다 조금 더 쉬워요. 유리함수에서 했던 것 중에서 식만 무리함수에 맞게 바꾸면 되거든요. 기본적인 내용은 모두 같아요.
무리함수에는 x의 범위와 y의 범위를 파악하는 게 중요합니다. 이건 실수영역에서 제곱근의 정의를 잘 생각해보면 금방 알 수 있는 내용이니까 어렵게 생각하지는 마세요.
무리함수는 무리식을 이용한 함수니까 무리식에 관해서 잘 이해하고 있어야 해요. 생각나지 않는다면 한 번 읽어보세요.
무리함수
함수 y = f(x)에서 f(x)가 x에 대한 유리식이면 유리함수라고 해요. 그럼 f(x)가 x에 대한 무리식이면 뭐라고 부를까요? 바로 무리함수예요.
보통은 라고 써요.
함수는 실수 범위에서만 구해요. 근호 안이 0 또는 양수여야 합니다. ax ≥ 0이어야 하는데, a = 0이면 y = 0이 되어 무리함수가 아니죠? 따라서 별다른 언급이 없으면 무리함수 에서는 a ≠ 0이어야 하고, 근호 안이 0 또는 양수인 x의 범위를 정의역으로 해요.
다만, 이 글에서는 설명을 위해서 a > 0인 경우만 다루기로 하죠.
(a > 0)의 역함수를 구해볼까요? ax ≥ 0이어야하는데 a > 0이니까 정의역은 x ≥ 0이네요. 치역도 y ≥ 0이죠?
어떤가요? x ≥ 0일 때, 무리함수 (a > 0)와 이차함수
(a > 0)은 서로 역함수라는 걸 알 수 있어요. 이차함수와 무리함수의 관계에 대해서 얼추 이해가 되죠?
이번에는 a > 0이라고 할 때 와 여러 무리함수의 그래프를 그려보죠. 근호 안은 0 또는 양수가 되어야 해요.
의 그래프는 a > 0, x ≥ 0, y ≥ 0이므로 제 1 사분면에 그려져요.
의 그래프 a > 0, x ≤ 0, y ≥ 0이므로 제 2 사분면에 그려지고요.
의 그래프와 모양은 같은데 x의 부호가 반대니까 y축에 대하여 대칭이죠.
의 그래프는 a > 0, x ≥ 0, y ≤ 0이므로 제 4 사분면에 그려지죠.
의 그래프와 모양은 같은데, y의 부호가 반대니까 x축 대칭이죠.
의 그래프는 a > 0, x ≤ 0, y ≤ 0이므로 제 3 사분면에 그려져요.
의 그래프와 모양은 같은데, x, y의 부호가 반대니까 원점에 대하여 대칭이고요.
(a > 0)에서 a가 커지면 커질수록 그래프는 x축에서 멀어져요. a < 0일 때는 a가 작으면 작을수록 x축에서 멀어지기 때문에 이 둘을 합쳐 |a|가 커질수록 x축에서 멀어진다고 해요.
함께 보면 좋은 글
무리함수 그래프의 평형이동
무리함수의 역함수, 무리함수 역함수의 성질
유리함수, 다항함수, 분수함수, 점근선
유리함수 2, 분수함수
분수함수의 역함수, 분수함수의 역함수 구하는 방법
역함수, 역함수 구하는 법
무리식, 무리식의 연산