로그함수의 그래프

로그부등식은 로그방정식 + 지수부등식이에요. 기본적으로 로그라는 기본 틀이 같으니까 로그방정식의 풀이법을 따르는데 식 자체가 부등식이니까 지수부등식에 나왔던 내용과 비슷하죠.

로그부등식을 풀 때 이용하는 성질은 로그함수의 그래프를 생각하면 쉽게 이해할 수 있어요. 로그함수의 그래프는 밑이 1보다 클 때와 0보다 크고 1보다 작을 때의 두 가지가 있었죠? 그래서 로그부등식을 푸는 기본 성질도 두 가지가 있어요.

이 두 가지 성질만 잘 이해하면 로그부등식의 문제를 푸는 게 아주 쉬워요.

로그부등식

로그방정식은 로그의 밑 또는 진수에 미지수를 포함하는 방정식이죠? 그러니까 로그부등식은 로그의 밑 또는 진수에 미지수를 포함하는 부등식을 말해요.

지수부등식, 지수부등식의 풀이에서 지수함수의 그래프를 이용해서 지수부등식을 설명했어요. 로그부등식에서도 로그함수의 그래프를 이용해서 설명할게요.

로그함수 y = logax 그래프는 밑인 a의 크기에 따라 함수의 특징이 달라졌어요. a > 1일 때는 x가 증가하면 y도 증가하고, 0 < a < 1일 때는 x가 증가하면 y는 감소해요.

아래는 a > 1일 때의 y = logax 그래프예요.

로그함수의 그래프 (a > 1일 때)

밑이 1보다 큰 로그함수는 증가함수니까 x1 < x2이면 logax1 < logax2이에요. 로그부등식의 부등호의 방향과 진수인 x의 부등호의 방향이 같아요.

이번에는 0 < a < 1일 때의 y = logax 그래프예요.

로그함수의 그래프 (0 < a < 1일 때)

밑이 0보다 크고 1보다 작은 로그함수는 감소함수니까 x1 < x2이면 logax1 > logax2이에요. 로그부등식의 부등호의 방향과 진수인 x의 부등호의 방향이 반대예요.

  • 임의의 양수 x1, x2에 대하여 a > 0, a ≠ 1일 때
  • a > 1일 때
    • logax1 < logax2 ⇔ x1 < x2
    • (로그부등식의 부등호의 방향) = (진수의 크기를 나타내는 부등호의 방향)
  • 0 < a < 1일 때
    • logax1 < logax2 ⇔ x1 > x2
    • (로그부등식의 부등호의 방향)과 (진수의 크기를 나타내는 부등호의 방향)이 반대

로그부등식을 풀 때는 이 성질을 이용해요. 이 성질은 지수부등식, 지수부등식의 풀이에서의 특징과 같아요.

이건 밑이 같을 때예요. 만약에 밑이 다르면 어떻게 해야 할까요? 간단해요. 로그의 성질이나 로그의 밑 변환 공식을 이용해서 밑을 같게 만들어 주면 돼요.

지수에 로그가 있을 때는 로그를 취해서 풀어요.

공통부분이 있다면 치환을 하고요.

로그방정식에서 했던 것과 똑같죠?

그러니까 로그부등식은 지수부등식 + 로그방정식이에요.

그리고 로그부등식을 풀 때 절대 빠뜨리면 안 되는 게 한 가지 있어요. 바로 밑이 1이 아닌 양수, 진수가 양수인지 꼭 확인하는 거요. 로그의 정의에서 얘기한 밑과 진수의 조건에 맞는지 확인하는 거죠. 로그방정식에서도 중요한 내용이었어요.

다음 로그부등식의 해를 구하여라.
(1) log2(x + 1) < 4
(2) log3x ≥ log9x
(3) (logx)2 - logx < 6

(1)은 좌변은 로그, 우변은 그냥 실수네요. 우변에 log22 = 1을 곱해보죠.

log2(x + 1) < 4
log2(x + 1) < 4log22
log2(x + 1) < log224

양변의 밑이 2로 같고 1보다 크니까 로그부등식의 부등호 방향과 진수의 방향이 같아요.

x + 1 < 24
x < 15

여기서 끝이 아니죠? 로그의 진수는 양수여야 하니까 좌변의 진수 x + 1도 양수여야 해요.

x + 1 > 0
x > -1

따라서 해는 -1 < x < 15

(2)번은 양변의 밑이 서로 다르네요. 로그의 성질을 이용해서 밑을 같게 만들어줘야 해요.

양변의 밑이 3으로 같고 1보다 크니까 로그부등식의 부등호 방향과 진수의 방향이 같아요.

x2 ≥ x
x2 - x ≥ 0
x(x - 1) ≥ 0

x ≤ 0 or x ≥ 1

진수 x2과 x가 양수여야 하죠?

x2 > 0
x ≠ 0

x > 0

따라서 해는 x ≥ 1

(3)에는 밑이 없네요. 상용로그란 얘기죠. logx = t로 치환해보죠.

(logx)2 - logx < 6
t2 - t < 6
t2 - t - 6 < 0
(t - 3)(t + 2) < 0
-2 < t < 3

-2 < logx < 3
-2log10< logx < 3log10
log10-2 < logx < log103

밑이 10으로 같고 1보다 크니까 부등호의 방향과 진수의 방향이 같아요.

10-2 < x < 103

진수 x는 0보다 커야하죠? x > 0

따라서 해는 < x < 1000

함께 보면 좋은 글

로그방정식, 로그방정식의 풀이
로그함수와 로그함수의 그래프
지수부등식, 지수부등식의 풀이
로그의 성질, 로그의 성질 증명
로그의 밑 변환 공식

정리해볼까요

로그부등식: 로그의 밑 또는 진수에 미지수를 포함하는 부등식

  • 임의의 양수 x1, x2에 대하여 a > 0, a ≠ 1일 때
  • a > 1일 때
    • logax1 < logax2 ⇔ x1 < x2
    • (로그부등식의 부등호의 방향) = (진수의 크기를 나타내는 부등호의 방향)
  • 0 < a < 1일 때
    • logax1 < logax2 ⇔ x1 > x2
    • (로그부등식의 부등호의 방향)과 (진수의 크기를 나타내는 부등호의 방향)이 반대
<<    수학 1 목차    >>
 
그리드형

로그함수와 로그함수의 그래프에 대해서 알아보죠.

로그의 정의에서 공부했던 것처럼 로그와 지수(거듭제곱)는 서로 깊은 관계가 있어요. 따라서 로그함수와 지수함수도 아주 깊은 관계가 있죠. 그래프도 물론이고요.

역함수와 역함수의 그래프의 성질에 대해서 알고 있으면 로그함수와 지수함수의 관계를 조금 더 쉽게 이해할 수 있어요.

로그함수

역함수, 역함수 구하는 법에서 역함수 구하는 방법 공부했었죠?

지수함수 y = ax (a > 0, a ≠ 1)의 역함수를 구해보죠.

  1. 함수 y = f(x)가 일대일 대응인지 확인
    지수함수 y = ax (a > 0, a ≠ 1)에서 정의역은 실수의 집합이고, 치역은 양수의 집합이었어요. 그리고 일대일 대응이죠.
  2. y = f(x)를 x에 대하여 푼다. → x = f-1(y)
    로그의 정의에 따르면 y = ax → x = logay
  3. x와 y를 바꾼다. → y = f-1(x)
    y = logax
  4. 함수 f의 정의역과 치역을 서로 바꾼다.
    정의역은 양수의 집합, 치역은 실수의 집합

지수함수의 역함수를 구했더니 a를 밑으로 하는 로그가 되었죠? 이 로그를 로그함수라고 해요.

로그함수
y = logax (a > 0, a ≠ 1)
지수함수 y = ax (a > 0, a ≠ 1)의 역함수
정의역은 양수 전체의 집합, 치역은 실수 전체의 집합

로그함수의 그래프

로그함수의 그래프를 한 번 그려보죠.

로그함수는 지수함수의 역함수예요. 역함수의 그래프는 y = x에 대하여 대칭이에요. 지수함수 y = ax의 그래프를 y = x에 대칭이동한 그래프가 로그함수 y = logax의 그래프죠.

지수함수 y = ax (a > 0, a ≠ 1)의 그래프는 (0, 1), (1, a)를 지나고 x축이 점근선이었어요.

그리고 a의 범위에 따라 두 가지 형태가 있었죠. a > 1일 때는 x가 증가할 때, y도 증가하고, 0 < a < 1일 때는 x가 증가하면 y는 감소해요.

로그함수의 그래프 - a > 1일 때      로그함수의 그래프 - 0 < a < 1일 때

왼쪽이 a > 1일 때로 얇은 빨간선이 y = ax의 그래프, 두꺼운 파란선이 y = logax의 그래프예요. 로그함수의 그래프도 x가 증가하면 y가 증가하네요. 로그함수의 그래프는 y축에 점점 가까워지니까 y축이 점근선이에요.

오른쪽이 0 < a < 1일 때로 지수함수와 로그함수의 그래프에서 x가 증가하면 y가 감소해요.

지수함수 y = ax, 로그함수 y = logax (a > 0, a ≠ 1)를 비교해보죠.

지수함수 y = ax와 로그함수 y = logax의 그래프 비교
a > 0, a ≠ 1 y = ax y = logax
정의역 {x|x는 실수} {x|x > 0인 실수}
치역 {y|y > 0인 실수} {y|y는 실수}
(0, 1) (1, 0)
(1, a) (a, 1)
점근선 x축 y축
증가, 감소 a > 1일 때, x가 증가하면 y도 증가
0 < a < 1일 때, x가 증가하면 y는 감소
역함수 두 함수는 서로 역함수로 그래프는 y = x에 대하여 대칭

함께 보면 좋은 글

지수함수, 지수함수의 그래프
로그함수 그래프의 평행이동과 대칭이동
역함수, 역함수 구하는 법
역함수의 성질, 역함수의 그래프

정리해볼까요

로그함수와 그래프

  • y = logax (a > 0, a ≠ 1)
  • 지수함수 y = ax (a > 0, a ≠ 1)의 역함수, y = x에 대하여 대칭
  • 정의역은 양수 전체의 집합, 치역은 실수 전체의 집합
  • (1, 0), (a, 1)을 지난다.
  • 점근선은 y축
  • a > 1일 때, x가 증가하면 y도 증가
    0 < x < 1일 때, x가 증가하면 y는 감소
<<    수학 1 목차    >>
 
그리드형

+ 최근글