등식의 성질

사실 이제까지 해온 모든 과정은 이 글의 내용을 위해서 공부한 것이라고 해도 과언이 아니에요. 이 단원의 핵심이 바로 오늘 공부할 내용입니다.

일차방정식의 뜻과 풀이는 한 단원에서 제일 중요한 것뿐 아니라, 중1 수학에서 핵심 중의 핵심인 내용입니다. 매우 중요하죠.

설명과 원리는 비교적 간단하니까 문제 푸는 연습을 많이 하세요. 암산까지는 아니더라도 막힘없이 문제를 푸는 수준까지는 되어야 합니다.

이항

등식의 성질에서 등식의 양변에 같은 수를 더하거나 같은 수를 빼도 등식은 성립한다고 했어요. 그리고 이 등식의 성질을 이용해서 미지수 x의 값을 구했죠.

2x + 3 = 9에서 좌변의 3을 없애주려고 양변에서 3을 빼줬어요.
2x + 3 - 3 = 9 - 3

여기서 우변은 그대로 두고, 좌변만 계산을 해보면 3 - 3은 0이 되니까 2x만 남죠.
2x = 9 - 3

처음 식 2x + 3 = 9와 두 번째 식 2x = 9 - 3을 비교해볼까요?

다른 건 다 그대로인데, 좌변에 + 3이 없어지고, 우변에 - 3이 생겼죠? 좌변에 있던 상수항은 없어지고, 우변에는 상수항과 부호가 반대인 새로운 상수항이 생겼어요.

이걸 원래 좌변에 있던 항의 부호를 반대로 바꿔서 우변으로 옮기는 것으로 생각하게 된 거죠. 이렇게 함으로써 좌변에서 상수항을 계산했던 과정을 생략할 수 있거든요.

이처럼 등식의 성질을 이용해서 등식의 한 변에 있는 항을 부호를 바꾸어 등호의 반대쪽으로 옮기는 것을 이항이라고 해요. 이건 좌변에 있는 걸 부호를 바꾸어 우변으로 옮길 수도 있고, 우변에 있는 걸 부호를 반대로 바꿔서 좌변에 써 줄 수 있어요. 상수항만 되는 게 아니라 모든 항이 가능해요.

이항

3 = x - 4에서 우변의 - 4를 좌변으로 옮기면서 부호를 반대로 바꿔주면
3 + 4 = x가 되지요.

3x - 2 = 6 - x라는 식이 있을 때, x가 있는 항을 좌변으로, 상수항을 우변으로 이항하면
3x + x = 6 + 2가 돼요.

일차방정식의 뜻

일차방정식은 일단 이름에서 방정식이라는 걸 알 수 있어요. 그리고 차수가 1이라는 것도 알 수 있죠. 일차방정식은 차수가 1인 방정식을 말해요.

식 자체만 봐서는 일차방정식인지 아닌지 알 수 없어요. 일차방정식인지 판단하기 전에 모든 항을 좌변으로 이항해서 동류항끼리 계산을 해야 해요. 계산한 뒤에 좌변이 일차식이 되는지를 봐야 알 수 있어요. 일차방정식은 (일차식) = 0의 형태거든요.

2x + 3 = 5의 모든 항을 좌변으로 이항해서 정리해보죠.
2x + 3 - 5 = 0
2x - 2 = 0

이 식은 미지수 x의 차수가 1인 일차방정식이 맞네요.

2(x + 3) = 6 + 2x의 모든 항을 좌변으로 이항시켜 보죠.
2(x + 3) - 6 - 2x = 0
2x + 6 - 6 - 2x = 0
0 = 0

모든 항을 좌변으로 이항해서 정리했는데, 미지수 x가 없어요. 그래서 차수가 0이 되었죠. 2(x + 3) = 6 + 2x를 봤을 때, x의 차수가 1이었는데, 정리를 해보니까 x가 없어졌어요. 그냥 봤을 때는 일차방정식처럼 보이지만 실제는 아니라는 거죠. 따라서 일차방정식인지 아닌지를 알아볼 때는 이항과 동류항 정리를 꼭 해봐야 합니다.

다음 중 일차방정식을 모두 고르시오.
(1) 2(x + 3) = -2x + 3
(2) 2(x + 3) = 2x + 3
(3) x2 + x - 1 = x2 - x - 1
(4) x2 + x - 1 = -x2 - x - 1

일차방정식인지 아닌지 알아볼 때는 모든 항을 좌변으로 이항해서 정리한 식이 일차식인지 보는 거예요.

(1) 2(x + 3) = -2x + 3의 모든 항을 이항시켜보죠.
2(x + 3) + 2x - 3 = 0
2x + 6 + 2x - 3 = 0
4x + 3 = 0

좌변이 x에 관한 일차식이므로 일차방정식이 맞네요.

(2) 2(x + 3) = 2x + 3
2(x + 3) - 2x - 3 = 0
2x + 6 - 2x - 3 = 0
3 = 0

일단 3과 0은 같지 않으니까 틀린 등식인데다가 좌변에 문자가 없이 상수항만 있으니 차수가 0이 되어 일차식도 아니고, 방정식도 아닌 식이네요.

(3) x2 + x - 1 = x2 - x - 1
x2 + x - 1 - x2 + x + 1
2x = 0

좌변이 x에 관한 일차식이므로 일차방정식이군요.

(4) x2 + x - 1 = -x2 - x - 1
x2 + x - 1 + x2 + x + 1 = 0
2x2 + 2x = 0

최고차항의 차수가 2이므로 이차방정식입니다.

보기에서 (1)과 (3)이 일차방정식입니다.

일차방정식의 풀이

일차방정식의 풀이는 기본적으로 이항과 등식의 성질을 이용해요. 등식의 성질을 이용한 방정식의 풀이에서 x = (숫자)꼴로 만들어서 해를 구했어요.

여기서도 마찬가지예요. x = (숫자) 꼴로 만들어요.

  1. x가 포함된 모든 항은 좌변으로, x가 없는 항(상수항)은 모두 우변으로 이항
  2. 각 변을 정리하여 ax = (숫자)꼴로
  3. x의 계수 a로 양변을 나눈다.

일차방정식의 풀이

다음 방정식을 풀어라.
(1) 2x + 4 = 3x - 5
(2) 5 + 3x = x + 7

방정식을 푼다는 말은 방정식을 참이 되게 하는 미지수의 값, 해를 구하라는 얘기예요. 방정식을 풀 때는 좌변에는 x가 있는 항, 우변에는 상수항이 오도록 이항하고, 동류항을 계산한 다음 x의 계수로 나눠주는 거죠.

(1) 2x + 4 = 3x - 5
2x - 3x = -5 - 4
-x = -9
x = 9

(2) 5 + 3x = x + 7
3x - x = 7 - 5
2x = 2
x = 1

함께 보면 좋은 글

방정식과 항등식, 등식의 뜻
등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
복잡한 일차방정식의 풀이
일차방정식의 활용 첫번째
일차방정식의 활용 2

정리해볼까요

이항: 등식에서 항의 부호를 바꾸어 반대변으로 옮기는 것

일차방정식: 미지수의 차수가 1인 방정식. (일차식) = 0

일차방정식의 풀이

  1. x가 포함되어 있는 모든 항은 좌변으로, x가 없는 항(상수항)은 모두 우변으로 이항
  2. 각 변을 정리하여 ax = (숫자)꼴로
  3. x의 계수로 양변을 나눈다.
 
그리드형

방정식과 항등식, 등식의 뜻에서 등식과 방정식, 항등식에 대해서 공부했어요.

이제는 등식의 성질을 공부할 거예요. 등식의 특징이 있는데, 이 특징을 잘 이용하면 방정식의 해를 쉽게 구할 수 있거든요. 앞으로 배울 단원이 일차방정식인 걸 고려하면 이 등식의 성질은 앞으로 계속해서 사용할 아주 중요한 성질이라는 알 수 있겠죠?

그렇다고 성질을 공식처럼 외울 필요는 없어요. 그 의미를 제대로 파악하고 실제 식에서 사용할 수 있으면 돼요.

등식의 성질

등식에는 아주 중요한 성질이 있어요. 이 성질은 꼭 알고 있어야 합니다.

참인 등식은 등호(=) 양쪽에 있는 좌변과 우변이 같아요.

2 + 3 = 5는 참인 등식이죠. 이 등식의 양변에 4를 더해볼까요?
2 + 3 + 4 = 5 + 4

양변에 똑같이 4를 더하면, 좌변, 우변의 값은 9로 달라지지만, 양쪽 모두 9니까 서로 같은 건 그대로죠. 만약에 양변에 똑같이 4를 뺀다면 어떨까요? 값은 1이 되지만 양변 모두 1이니까 양변이 같은 건 그대로 에요.

즉, 참인 등식에서 양변에 같은 수를 더하거나 빼더라도 그 등식은 계속 참인 거죠.

양변에 같은 수를 더하거나 뺄 때뿐 아니라 같은 수를 곱하거나 나눌 때도 똑같아요. 이걸 등식의 성질이라고 해요.

등식의 성질

  1. 등식의 양변에 같은 수를 더해도 등식은 성립한다.
    a = b이면 a + c = b + c
  2. 등식의 양변에서 같은 수를 빼도 등식은 성립한다.
    a = b이면 a - c = b - c
  3. 등식의 양변에 같은 수를 곱해도 등식은 성립한다.
    a = b이면 ac = bc
  4. 등식의 양변을 0이 아닌 같은 수로 나누어도 등식은 성립한다.
    a = b이면 a ÷ c = b ÷ c (c ≠ 0)

한 가지 주의할 건 양변을 같은 수로 나눌 때 0으로 나누는 건 안 되요. 나눗셈은 분수로 바꿀 수 있는데, 분모가 0인 분수는 없으니까 0으로 나누는 경우는 없어요. 문제에서 "등식의 양변을 같은 수로 나누어도 등식은 성립한다."라는 말이 나오면 틀린 거예요.

등식의 성질을 이용한 일차방정식의 풀이

등식의 성질이 왜 중요하면 방정식을 풀 때 이용하기 때문이에요.

방정식의 해를 구할 때, x = 1, 2, 3, …처럼 숫자를 하나씩 넣으면서 구할 수는 없어요. 해가 1, 2, 3안에 있으면 괜찮지만 100일 수도 있고, -1일 수도 있잖아요. 혹은 일 수도 있고요.

이때, 등식의 성질을 이용하면 방정식의 해를 조금 더 쉽게 구할 수 있어요.

4x + 2 = -10이라는 방정식이 있다고 해보죠. x = (숫자) 꼴로 나타내면 미지수 x의 값을 구할 수 있죠? 이 미지수 x의 값이 방정식의 해고요. 방정식의 좌변에 x만 남도록 식의 모양을 바꿔보죠.

4x + 2 = -10에서 좌변에서 일단 2를 없애보죠. 2를 없애려면 2를 빼면 되는데, 좌변에서 2를 빼면, 우변에도 똑같이 2를 빼줘야 등식이 성립해요.
4x + 2 = -10
4x + 2 - 2 = -10 - 2        (등식의 양변에서 똑같은 수를 빼도 등식은 성립한다.)
4x = -12

이제 좌변에 4x만 남았네요. 4x는 원래는 4 × x로 곱셈기호가 생략된 거예요. 4로 나눠주면 x만 남겠죠? 좌변을 4로 나누면 우변도 4로 나눠줘야 등식이 성립해요.
4x = -12
4x ÷ 4 = -12 ÷ 4           (등식의 양변을 0이 아닌 같은 수로 나누어도 등식은 성립한다.)
x = -3

해를 구했어요.

등식의 성질을 이용한 방정식의 풀이
x = (숫자) 꼴로 방정식의 모양을 바꾼다.
x가 없는 항을 먼저 정리하고, 마지막에 x의 계수로 양변을 나눈다.

등식의 성질을 이용하여 다음 방정식을 풀어라.
(1) -3x + 2 = 8
(2) 5x - 5 = 30

x = (숫자) 꼴로 방정식의 모양을 바꾸는데, 이때 등식의 성질을 이용해요.

(1)에서 먼저 2를 없앤 다음에, x에 곱해져 있는 (-3)을 없애야겠네요.
-3x + 2 = 8
-3x + 2 - 2 = 8 - 2
-3x = 6
-3x ÷ (-3) = 6 ÷ (-3)
x = -2

(2) 5x - 5 = 30
5x - 5 + 5 = 30 + 5
5x = 35
5x ÷ 5 = 35 ÷ 5
x = 7

함께 보면 좋은 글

방정식과 항등식, 등식의 뜻
일차방정식의 풀이, 일차방정식의 뜻, 이항
복잡한 일차방정식의 풀이
일차방정식의 활용 첫번째
일차방정식의 활용 2

정리해볼까요

등식의 성질

  • 등식의 양변에 같은 수를 더해도 등식은 성립한다.
    a = b이면 a + c = b + c
  • 등식의 양변에서 같은 수를 빼도 등식은 성립한다.
    a = b이면 a - c = b - c
  • 등식의 양변에 같은 수를 곱해도 등식은 성립한다.
    a = b이면 ac = bc
  • 등식의 양변을 0이 아닌 같은 수로 나누어도 등식은 성립한다.
    a = b이면 a ÷ c = b ÷ c (c ≠ 0)

등식의 성질을 이용한 방정식의 풀이

  • x = (숫자) 꼴로 변경
  • x가 없는 항부터 없앤 후 마지막에 x의 계수로 양변을 나눔
 
그리드형

부등식의 성질

2012. 6. 8. 12:30

부등식이란 무엇인지 이해하셨나요?

부등식을 이해할 때 등식과 비교해서 이해하면 좀 더 쉽게 이해할 수 있어요. 등식과 부등식은 이름에서 알 수 있듯이 사촌(?) 관계에요. 등호 대신 부등호를 사용하는 게 부등식이죠.

부등식과 등식이 비슷한 부분이 있는데, 같은 부분은 그대로 이해하면 되고, 다른 부분만 조금 더 생각하면 돼요. 두 가지 빼면 등식의 성질과 완전히 같아요. 등식의 성질을 다 알고 있겠지만 한 번 더 정리해보죠.

등식의 성질

  1. 등식의 양변에 같은 수를 더해도 등식은 성립한다.
    a = b이면 a + c = b + c
  2. 등식의 양변에서 같은 수를 빼도 등식은 성립한다.
    a = b이면 a - c = b - c
  3. 등식의 양변에 같은 수를 곱해도 등식은 성립한다.
    a = b이면 ac = bc
  4. 등식의 양변을 같은 수로 나누어도 등식은 성립한다.
    a = b이면 a ÷ c = b ÷ c (c ≠ 0)

등식에서는 양변에 같은 수를 더하거나 빼거나 곱하거나 나누어도 등식은 성립하는 성질이 있어요. 부등식에도 비슷한 성질이 있어요.

부등식의 성질

부등식의 양변에 똑같은 수를 더할 때: 부등호의 방향은 바뀌지 않는다.

8 > 4라는 부등식을 이용해보죠.

위 부등식의 양변에 똑같이 2를 더해볼까요? 8 + 2 > 4 + 2는 10 > 6이 되어서 부등호의 방향이 그대로예요. 양변에 음수를 더해볼까요? 8 + (-2) > 4 + (-2)을 하면 6 > 2이 되어서 부등호의 방향은 역시 바뀌지 않아요.

부등식의 양변에서 똑같은 수를 뺄 때: 부등호의 방향은 바뀌지 않는다.

이번에는 양변에서 같은 수를 빼보죠. 2를 빼 볼게요. 8 - 2 > 4 - 2는 6 > 2가 되어서 부등호가 그대로예요. 음수를 빼 볼게요. 8 - (-2) > 4 - (-2)은 10 > 6이 되어서 마찬가지로 부등호가 그대로군요.

부등식의 양변에 똑같은 수를 곱할 때: 양수를 곱하면 그대로, 음수를 곱하면 바뀐다.

자 이번에는 같은 수를 곱해볼게요. 8 × 2 > 4 × 2은 16 > 8이 되어서 부등호가 그대로예요. 음수를 곱해보죠. 좌변은 8 × (-2) = -16, 우변은 4 × (-2) = -8이 돼요. 부등호가 어떻게 되어야 하죠? -16 < -8처럼 부등호가 바뀌어야 참이죠?

부등식의 양변을 똑같은 수로 나눌 때: 양수로 나누면 그대로, 음수로 나누면 바뀐다.

나누기를 해보죠. 8 ÷ 2 > 4 ÷ 2 는 부등호 방향이 그대로예요. 음수인 (-2)로 나눠볼까요? 8 ÷ (-2)과 4 ÷ (-2) 중 어떤 게 더 큰가요? -4 < -2가 되어야 참이 되네요.

위의 내용을 다 이해했다면 이것만 기억하세요.

부등식의 성질
부등식의 양변에 음수를 곱하거나 음수로 나눌 때만 부등호의 방향이 바뀐다. 그 외에는 그대로이다

a < b일 때 다음 괄호에 알맞은 부등호를 넣어라.
(1) a+5 (    ) b+5
(2) a-3 (    ) b-3
(3) 10a (    ) 10b
(4) -2a (    ) -2b
(5) -5a + 9 (    ) -5b + 9

(1)에서 a < b 이고, 양변에 같은 수인 5를 더했으므로 부등호의 방향은 바뀌지 않고, 그대로 즉, a + 5 < b + 5가 되고요.

(2)도 마찬가지로 양변에서 같은 수를 뺐으므로 부등호의 방향이 그대로예요. a - 3 < b - 3

(3)은 양변에 양수인 10을 곱했으니까 부등호의 방향이 그대예요. 10a < 10b

(4)는 양변에 음수인 -2를 곱했어요. 그러니까 부등호의 방향이 바꿔야겠죠? -2a > -2b

(5)에는 항이 두 개가 되었는데, a, b의 계수가 바뀐 것 즉, -5를 곱해준 계산이 먼저예요. 음수인 -5를 곱했으니 부등호가 바뀌겠죠? -5a > -5b가 돼요. 거기에 양변에 9를 더했으니까 부등호의 방향은 그대로 즉, -5a + 9 > -5b + 9가 돼요.

함께 보면 좋은 글

[중등수학/중1 수학] - 등식의 성질, 등식의 성질을 이용한 일차방정식의 풀이
부등식, 부등식의 뜻
일차부등식의 풀이
여러가지 일차부등식

정리해볼까요

부등식의 성질

  1. 부등식의 양변에 같은 수를 더해도 부등호의 방향은 바뀌지 않는다.
    a > b일 때 a + c > b + c
  2. 부등식의 양변에서 같은 수를 빼도 부등호의 방향은 바뀌지 않는다.
    a > b일 때 a - c > b - c
  3. 부등식의 양변에 같은 수를 곱할 때
    • 양수를 곱하면 부등호의 방향은 바뀌지 않는다.
      a > b일 때 ac > bc (c > 0)
    • 음수를 곱하면 부등호의 방향이 바뀐다.
      a > b일 때 ac < bc (c < 0)
  4. 부등식의 양변을 같은 수로 나눌 때
    • 양수로 나누면 부등호의 방향은 바뀌지 않는다.
      a > b일 때 a ÷ c > b ÷ c (c > 0)
    • 음수로 나누면 부등호의 방향이 바뀐다.
      a > b일 때 a ÷ c < b ÷ c (c < 0)
 
그리드형

+ 최근글