고등수학/고1 수학

사인법칙, 코사인법칙 총정리

수학방 2014. 1. 4. 20:00

사인법칙, 제1 코사인법칙, 제2 코사인법칙을 서로 비교해서 특징과 차이를 총정리하는 시간을 가져볼게요.

공식을 외우는 건 어쩌면 그리 어려운 건 아닐 거예요. 그런데 어떤 조건이 있을 때 어떤 공식을 사용해야 하는지는 무척 헷갈리죠. 어차피 삼각형이야 변의 길이, 각의 크기를 알려주고 알려주지 않은 나머지 변의 길이와 각의 크기를 구하는 거라서 문제에서 주는 정보가 다 거기서 거기거든요.

이 글에서는 세 가지 공식을 한 번 더 정리해보고 어떤 경우에 어떤 공식을 사용해야 하는지까지 알아보죠.

사인법칙, 코사인법칙 총정리

일단 각 법칙을 다시 한 번 써보고 어떤 특징이 있는지 알아봐요.

사인법칙

△ABC의 외접원의 반지름을 R, 각의 대응변의 길이를 a, b, c라고 할 때

를 보죠. 두 각의 크기(A, B)와 두 변의 길이(a, b) 총 네 가지 항목으로 되어 있어요. 두 각 A, B의 크기를 알면 다른 한 각 C의 크기도 구할 수 있죠?

a, B, C를 알 때 삼각형 내각의 합은 180°니까 A를 알 수 있고 이를 이용해서 b를 구할 수 있어요. b, A, C를 알 때는 B를 알 수 있고 이를 이용해서 a를 구할 수 있고요. 이건 한 변의 길이와 그 양 끝각을 알 때로 정리할 수 있죠.

또, a, b와 A를 알 때 B를 구할 수 있어요. a, b, B를 알 때 A를 구할 수도 있죠. 이건 두 변의 길이와 끼인각이 아닌 다른 각의 크기를 알 때로 정리할 수 있어요.

제1 코사인법칙

△ABC의 각의 대응변의 길이를 a, b, c라고 할 때

  • a = bcosC + ccosB
  • b = ccosA + acosC
  • c = acosB + bcosA

첫 번째 a = bcosC + ccosB를 보죠. 두 각의 크기(B, C)와 세 변의 길이(a, b, c) 총 다섯 가지 항목으로 되어 있어요.

기본적으로 b, c, B, C를 알 때 a를 구할 수 있어요. 두 변의 길이와 두 대각의 크기를 알 때에요.

a, b, c, B를 알 때 C를 구할 수 있어요. 세 변의 길이와 한 각의 크기를 알 때죠.

제2 코사인법칙

  • a2 = b2 + c2 - 2bccosA
  • b2 = c2 + a2 - 2cacosB
  • c2 = a2 + b2 - 2abcosC

첫 번째 a2 = b2 + c2 - 2bccosA를 보죠. 한 각의 크기(A)와 세 변의 길이(a, b, c) 총 네 가지 항목으로 되어 있어요.

b, c, A를 알면 a를 구할 수도 있죠. 이건 두 변의 길이와 그 끼인각을 알 때로 정리할 수 있죠.

a, b, c를 알면 A를 구할 수 있어요. 세 변의 길이를 알 때로 정리할 수 있어요.

사인법칙, 코사인법칙의 비교

세 가지 법칙을 봤는데 그 공식만 봐도 어떤 경우에 어떤 값을 구할 수 있는지 알 수 있어요. 이걸 다시 한 번 정리해보죠.

사인법칙, 코사인법칙 정리
공식 사용
사인법칙
  • 한 변의 길이와 그 양 끝각의 크기를 알 때
  • 두 변의 길이와 끼인각이 아닌 각의 크기를 알 때
제1 코사인법칙
  • a = bcosC + ccosB
  • b = ccosA + acosC
  • c = acosB + bcosA
  • 두 각의 크기와 두 대변의 길이를 알 때
  • 세 변의 길이와 한 각의 크기를 알 때
제2 코사인법칙
  • a2 = b2 + c2 - 2bccosA
  • b2 = c2 + a2 - 2cacosB
  • c2 = a2 + b2 - 2abcosC
  • 두 변의 길이와 그 끼인각의 크기를 알 때
  • 세 변의 길이를 알 때

삼각형의 합동조건과 비교해서 외우면 좋아요. SSS, SAS, ASA

SSS, SAS → 제2 코사인법칙
ASA, SSA → 사인법칙 (∵ SSA는 합동조건은 아니고 두 변과 끼인각이 아닌 각을 외우기 위한 팁정도로 생각하세요.)
ASSA, SSSA → 제1 코사인법칙

사인법칙과 제2 코사인법칙은 세 가지만 알고 있으면 다른 하나를 구할 수 있어요. 제1 코사인법칙은 네 가지 조건을 알고 있을 때 다른 하나를 구할 수 있고요. 문제에서 조건을 충분히 알려주는 경우는 많지 않으니까 사인법칙, 제2 코사인법칙보다 제1 코사인법칙을 사용하는 경우는 더 적죠. 그래서 제1 코사인법칙을 사용하는 조건은 굳이 외우지 않아도 상관없어요.

다음을 구하여라.
(1) △ABC에서 A = 30°, B = 60°, c = 3cm일 때, a, b, C를 구하여라.
(2) △ABC에서 a = 2cm, b = 3cm, C = 60°일 때, c를 구하여라.

(1)번은 한 변의 길이와 양끝각의 크기를 알려줬어요. 사인법칙을 이용해서 구할 수 있다는 뜻이죠.

삼각형에서 두 내각의 크기를 알면 나머지 한 내각의 크기도 구할 수 있죠? C = 180° - (30° + 60°) = 90°

(2)번은 두 변의 길이와 그 끼인각의 크기를 알려줬어요. 제2 코사인법칙을 이용해서 구할 수 있다는 얘기에요.

함께 보면 좋은 글

사인법칙, 사인법칙 증명
코사인법칙, 제1코사인법칙 증명
코사인법칙, 제2 코사인법칙 증명
삼각방정식, 삼각방정식 푸는 방법
삼각부등식, 삼각부등식 푸는 법

정리해볼까요

△ABC의 외접원의 반지름을 R, 각의 대응변의 길이를 a, b, c라고 할 때

사인법칙

제1 코사인법칙

  • a = bcosC + ccosB
  • b = ccosA + acosC
  • c = acosB + bcosA
    • 제2 코사인법칙

      • a2 = b2 + c2 - 2bccosA
      • b2 = c2 + a2 - 2cacosB
      • c2 = a2 + b2 - 2abcosC
       
      그리드형